Spinal interneurons providing input to the final common path during locomotion (original) (raw)
Related papers
Delineating the Diversity of Spinal Interneurons in Locomotor Circuits
Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion.
Journal of Neurophysiology, 2017
Mapping the expression of transcription factors in the mouse spinal cord has identified ten progenitor domains, four of which are cardinal classes of molecularly defined, ventrally located interneurons that are integrated in the locomotor circuitry. This review focuses on the properties of these interneuronal populations and their contribution to hindlimb locomotor central pattern generation. Interneuronal populations are categorized based on their excitatory or inhibitory functions and their axonal projections as predictors of their role in locomotor rhythm generation and coordination. The synaptic connectivity and functions of these interneurons in the locomotor central pattern generators (CPGs) have been assessed by correlating their activity patterns with motor output responses to rhythmogenic neurochemicals and sensory and descending fibers stimulations as well as analyzing kinematic gait patterns in adult mice. The observed complex organization of interneurons in the locomotor...
Locomotor circuits in the mammalian spinal cord
Annual Review of Neuroscience, 2006
Intrinsic spinal networks, known as central pattern generators (CPGs), control the timing and pattern of the muscle activity underlying locomotion in mammals. This review discusses new advances in understanding the mammalian CPGs with a focus on experiments that address the overall network structure as well as the identification of CPG neurons. I address the identification of excitatory CPG neurons and their role in rhythm generation, the organization of flexor-extensor networks, and the diverse role of commissural interneurons in coordinating left-right movements. Molecular and genetic approaches that have the potential to elucidate the function of populations of CPG interneurons are also discussed.
The sequential stepping of left and right limbs is a fundamental motor behavior that underlies walking movements. This relatively simple locomotor behavior is generated by the rhythmic activity of motor neurons under the control of spinal neural networks known as central pattern generators (CPGs) that comprise multiple interneuron cell types. Little, however, is known about the identity and contribution of defined interneuronal populations to mammalian locomotor behaviors. We show a discrete subset of commissural spinal interneurons, whose fate is controlled by the activity of the homeobox gene Dbx1, has a critical role in controlling the left-right alternation of motor neurons innervating hindlimb muscles. Dbx1 mutant mice lacking these ventral interneurons exhibit an increased incidence of cobursting between left and right flexor/extensor motor neurons during drug-induced locomotion. Together, these findings identify Dbx1-dependent interneurons as key components of the spinal locomotor circuits that control stepping movements in mammals.
Journal of Neurophysiology, 2004
Electrophysiological and morphological properties of genetically identified spinal interneurons were examined to elucidate their possible contribution to locomotor-like rhythmic activity in 1-to-4-day old mice. In the transgenic mice used in our study, the HB9 promotor controlled the expression of the reporter gene enhanced green fluorescent protein (eGFP), giving rise to GFP + motoneurons and ventral interneurons. However, only motoneurons and a small group of bipolar, GFP + interneurons expressed the HB9 protein. The HB9 + /GFP + interneurons were clustered close to the medial surface in lamina VIII along segments L1-L3. The correlation between activity pattern in these visually identified interneurons and motoneuron output was examined using simultaneous whole-cell and ventral root recordings. Neurochemically induced rhythmic membrane depolarizations in HB9/GFP interneurons were synchronous with ventral root rhythms, indicating that the interneurons received synaptic inputs from rhythm-generating networks. The frequency of excitatory postsynaptic currents significantly increased during ventral root bursts, but there was no change in the frequency of inhibitory postsynaptic currents during the cycle period. These data implied that HB9/GFP interneurons received primarily excitatory inputs from rhythmogenic interneurons. Neurobiotinfilled axon terminals were in close apposition to other neurons in the cluster and to 3 motoneuron dendrites, raising the possibility that HB9/GFP interneurons formed synaptic connections with each other and with motoneurons. The expression of the vesicular glutamate transporter 2 in axon terminals of HB9/GFP interneurons indicated that these were glutamatergic interneurons. Our findings suggest that the visually identified HB9/GFP interneurons are premotor excitatory interneurons and putative constituents of networks generating locomotor rhythms in the mammalian spinal cord.
Deciphering the organization and modulation of spinal locomotor central pattern generators
Journal of Experimental Biology, 2006
SUMMARY Networks within our spinal cord generate the basic pattern underlying walking. Over the past decade, much progress has been made in our understanding of their function in a variety of vertebrate species. A significant hurdle has been the identification of candidate populations of neurons that are involved in pattern generation in the spinal cord. Recently,systems neuroscientists in collaboration with molecular biologists have begun to dissect the circuitry underlying spinal locomotor networks. These advances have combined genetic and electrophysiological techniques using in vitro preparations of the mouse spinal cord. This review will discuss new advances in the field of spinal locomotor networks with emphasis on the mouse. Many of the behaviors fundamental to animal life, such as breathing,chewing and locomotion, are rhythmic activities controlled by neuronal networks. Discerning which neurons are members of these networks, their synaptic connectivity and their individual e...
eNeuro, 2015
The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor-extensor and left-right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of spinal interneurons, including V0 (V0D and V0V subtypes), V1, V2a, V2b, V3, and Shox2, among others. The possible functional roles of these interneurons can be suggested from changes in the locomotor pattern generated in mutant mice lacking particular neuron types. Computational modeling of spinal circuits may complement these studies by bringing together data from different experimental studies and proposing the possible connectivity of these interneurons that may define rhythm generation, flexor-extensor interactions on each side of the cord, and commissural interactions between left and right circuits. This review focuses on the analysis of potential architectures of spinal circuits that...
Activity of Spinal Interneurons during Forward and Backward Locomotion
The Journal of Neuroscience, 2022
Higher vertebrates are capable not only of forward but also backward and sideways locomotion. Also, single steps in different directions are generated for postural corrections. While the networks responsible for the control of forward walking (FW) have been studied in considerable detail, the networks controlling steps in other directions are mostly unknown. Here, to characterize the operation of the spinal locomotor network during FW and backward walking (BW), we recorded the activity of individual spinal interneurons from L4 to L6 during both FW and BW evoked by epidural stimulation (ES) of the spinal cord at L5-L6 in decerebrate cats of either sex. Three groups of neurons were revealed. Group 1 (45%) had a similar phase of modulation during both FW and BW. Group 2 (27%) changed the phase of modulation in the locomotor cycle depending on the direction of locomotion. Group 3 neurons were modulated during FW only (Group 3a, 21%) or during BW only (Group 3b, 7%). We suggest that Group 1 neurons belong to the network generating the vertical component of steps (the limb elevation and lowering) because it should operate similarly during locomotion in any direction, while Groups 2 and 3 neurons belong to the networks controlling the direction of stepping. Results of this study provide new insights into the organization of the spinal locomotor circuits, advance our understanding of ES therapeutic effects, and can potentially be used for the development of novel strategies for recuperation of impaired balance control, which requires the generation of corrective steps in different directions.
Plateau properties in mammalian spinal interneurons during transmitter-induced locomotor activity
Neuroscience, 1996
We examined the organization of spinal networks controlling locomotion in the isolated spinal cord of the neonatal rat, and in this study we provide the first demonstration of plateau and bursting mechanisms in mammalian interneurons that show locomotor-related activity. Using tight-seal whole-cell recordings, we characterized the activity of interneurons from spinal regions previously suggested to be involved in locomotor rhythm generation. Most (63%) interneurons showed rhythmic, oscillating membrane potentials in phase with rhythmic ventral root activity induced by the glutamate receptor agonist, N-methyl-d-aspartate and 5-hydroxytryptamine or activation of muscarinic acetylcholine receptors. We focused our attention on these cells because they appeared most likely to be participating in locomotor networks. The rhythmic oscillations of most of these interneurons (88%) appeared to be driven mainly by excitatory and inhibitory synaptic inputs. A smaller number of interneurons, however, also displayed intrinsic plateau properties or bursting capabilities which amplified their response to excitatory input, and which were correlated with the presence of negative slope regions in the steady-state I–V curve, and with the ability to burst in the absence of synaptic drive.Although the bursting properties of these neurons may contribute to the generation of the locomotor rhythm, as suggested previously in studies of lower vertebrates, we suggest that a prime role of intrinsic plateau properties in mammalian locomotor networks is to facilitate or shape and time the propagation of information in the network.
Continuous shifts in the active set of spinal interneurons during changes in locomotor speed
Nature Neuroscience, 2008
The classic 'size principle' of motor control describes how increasingly forceful movements arise by the recruitment of motoneurons of progressively larger size and force output into the active pool. Here, we explore the activity of pools of spinal interneurons in larval zebrafish and find that increases in swimming speed are not associated with the simple addition of cells to the active pool. Instead, the recruitment of interneurons at faster speeds is accompanied by the silencing of those driving movements at slower speeds. This silencing occurs both between and within classes of rhythmically-active premotor excitatory interneurons. Thus, unlike motoneurons, there is a continuous shift in the set of cells driving the behavior, even though changes in the speed of the movements and the frequency of the motor pattern appear smoothly graded. We conclude that fundamentally different principles may underlie the recruitment of motoneuron and interneuron pools.