Simvastatin inhibits sonic hedgehog signaling and stemness features of pancreatic cancer (original) (raw)
Related papers
2018
Pancreatic ductal adenocarcinoma (PDA) is a disease with an exceptionally poor prognosis, high therapy resistance and poor effective therapeutic options. Advances in therapeutic treatments are urgently required. Cancer stem-like cells (CSCs), capable of unlimited self-renewal, have been proposed as a mechanism for cancer growth, therapy resistance and metastasis, involving PDA. Besides a function in normal tissue development, Sonic hedgehog (Shh) is highly expressed at all stages of human PDA. Recent data demonstrate that the expression of Shh is highly upregulated in CSCs and regulates them. Simvastatin, which is widely prescribed as cholesterol-lowering drug, was shown to inhibit tumor growth, metastasis and cancer-specific mortality in some studies, but the available data are not consistent. Most importantly, the hypothesis of my thesis, namely that simvastatin attacks pancreatic CSCs by inhibition of Sonic hedgehog signaling was never examined before. In my thesis, I evaluated t...
Variability in statin-induced changes in gene expression profiles of pancreatic cancer
Scientific reports, 2017
Statins, besides being powerful cholesterol-lowering drugs, also exert potent anti-proliferative activities. However, their anti-cancer efficacy differs among the individual statins. Thus, the aim of this study was to identify the biological pathways affected by individual statins in an in vitro model of human pancreatic cancer. The study was performed on a human pancreatic cancer cell line MiaPaCa-2, exposed to all commercially available statins (12 μM, 24 h exposure). DNA microarray analysis was used to determine changes in the gene expression of treated cells. Intracellular concentrations of individual statins were measured by UPLC (ultra performance liquid chromatography)-HRMS (high resolution mass spectrometer). Large differences in the gene transcription profiles of pancreatic cancer cells exposed to various statins were observed; cerivastatin, pitavastatin, and simvastatin being the most efficient modulators of expression of genes involved namely in the mevalonate pathway, ce...
Oncology Letters, 2017
Pancreatic cancer remains among the most lethal cancers, despite ongoing advances in treatment for all stages of the disease. Disease prevention represents another opportunity to improve patient outcome, with metabolic syndrome and its components, such as diabetes, obesity and dyslipidemia, having been recognized as modifiable risk factors for pancreatic cancer. In addition, statins have been shown to potentially reduce pancreatic cancer risk and to improve survival in patients with a combination of metabolic syndrome and pancreatic cancer. Furthermore, preclinical studies have demonstrated that statins exhibit antitumor effects in pancreatic cancer cell lines in vitro and animal models in vivo, in addition to delaying the progression of pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma (PDAC) and inhibiting PDAC formation in conditional K-Ras mutant mice. The mechanisms by which statins produce anticancer effects remain poorly understood, although appear to involve inhibition of the mevalonate/cholesterol synthesis pathway, thus blocking the synthesis of intermediates important for prenylation and activation of the Ras/mitogen-activated protein kinase 1 signaling pathway. Furthermore, statins have been identified to modulate the phosphoinositide 3-kinase/Akt serine/threonine kinase 1 and inflammation signaling pathways, and to alter the expression of genes involved in lipid metabolism, which are important for PDAC growth and proliferation. In addition, statins have been demonstrated to exhibit further antitumor mechanisms in a number of other cancer types, which are beyond the scope of the present review. In the present review, current evidence highlighting the potential of statins as chemopreventive agents in pancreatic cancer is presented, and the antitumor mechanisms of statins elucidated thus far in this disease are discussed. Contents
Molecules, 2021
Statins have been widely used for the treatment of hypercholesterolemia due to their ability to inhibit HMG-CoA reductase, the rate-limiting enzyme of de novo cholesterol synthesis, via the so-called mevalonate pathway. However, their inhibitory action also causes depletion of downstream intermediates of the pathway, resulting in the pleiotropic effects of statins, including the beneficial impact in the treatment of cancer. In our study, we compared the effect of all eight existing statins on the expression of genes, the products of which are implicated in cancer inhibition and suggested the molecular mechanisms of their action in epigenetic and posttranslational regulation, and in cell-cycle arrest, death, migration, or invasion of the cancer cells.
The prognosis of patients suffering from pancreatic cancer is still poor and novel therapeutic options are urgently needed. Recently, the transcription factor signal transducer and activator of transcription 5b (STAT5b) was associated with tumor progression in human solid cancer. Hence, we assessed whether STAT5b might serve as an anticancer target in ductal pancreatic adenocarcinoma (DPAC). We found that nuclear expression of STAT5b can be detected in approximately 50% of DPAC. Blockade of STAT5b by stable shRNA-mediated knockdown showed no effects on tumor cell growth in vitro. However, inhibition of tumor cell motility was found even in response to stimulation with epidermal growth factor or interleukin-6. These findings were paralleled by a reduction of prometa-static and proangiogenic factors in vitro. Subsequent in vivo experiments revealed a strong growth inhibition on STAT5b blockade in subcutaneous and orthotopic models. These findings were paralleled by impaired tumor angio-genesis in vivo. In contrast to the subcutaneous model, the orthotopic model revealed a strong reduction of tumor cell proliferation that emphasizes the meaning of assessing targets in an appropriate microenvironment. Taken together, our results suggest that STAT5b might be a potential novel target for human DPAC.
Statins Reduce the Risk of Pancreatic Cancer in Humans
Pancreas, 2007
The p16INK4A/CDKN2A (p16) tumor suppressor gene is known to be inactivated in up to 98% of human pancreatic cancer specimens. Chemically induced pancreatic tumors in Syrian golden hamsters have been demonstrated to share many morphological and biological similarities with human pancreatic tumors and represent a potentially suitable model for the evaluation of therapies targeting p16. The purpose of this study was to evaluate primary hamster pancreatic tumor specimens for potentially inactivating p16 alterations. Tumors were induced with N-nitroso-bis-(2-oxopropyl)amine, and were harvested on day 100. Foci of tumor cells were identified by light microscopy after staining with hematoxylin and eosin, and corresponding tumor tissues were excised for DNA extraction. The techniques of multiplex real-time PCR, direct sequencing and methylation specific PCR were used to evaluate 30 tumor specimens for homozygous deletions, mutations and aberrant methylation of 5Ј CpG islands, respectively. Homozygous deletions were identified in 11 of 30 (36.7%) specimens, mutations were identified in four of 30 (13.3%) specimens, and aberrant methylation of 5Ј CpG islands was found in 14 of 30 (46.7%) specimens. The overall frequency of p16 alterations was 93.3% (28 of 30 specimens) and the majority of changes (83.3%) were noted to be secondary to methylation or homozygous deletion. The four mutations significantly impaired cyclin-dependent kinase 4 inhibitory activity, and two resulted in perturbation of the global structure of P16 protein. These findings indicate that p16 inactivation is a common event in chemically induced hamster tumors, and that this animal model is appropriate for comparative studies evaluating pancreatic cancer therapeutic strategies targeting p16.
Influence of Statins and Cholesterol on Mortality Among Patients With Pancreatic Cancer
Journal of the National Cancer Institute, 2017
Recent studies have suggested associations between statins and enhanced survival among patients with pancreatic ductal adenocarcinoma (PDAC). However, the relationship between statins, cholesterol, and survival remains unclear. We conducted a retrospective cohort study on 2142 PDAC patients in a regional integrated healthcare system from 2006 to 2014. Electronic pharmacy records were used to abstract information on the type, length, and dosage of statin exposures starting in the year prior to diagnosis. The cumulative and individual effects of simvastatin, lovastatin, atorvastatin, pravastatin, and rosuvastatin on mortality were assessed using Cox proportional hazards regression. Statins were evaluated as any use (pre- and postdiagnosis as a time-dependent variable) and baseline use (prediagnosis only). We also evaluated whether low-density lipoprotein (LDL) cholesterol, measured at various time windows prior to diagnosis, had an independent influence on survival. Additional analyse...
Cancer Letters, 2009
Transforming growth factor-beta (TGF-b) inducible early gene 1 (TIEG1) is known to induce apoptosis in TGF-b sensitive pancreatic cancer cells, yet its effect on TGF-b resistant cancer cells remains unclear. In this study, TIEG1 was found to induce apoptosis in TGF-b resistant cancer cells and concurrently enhanced gemcitabine chemosensitivity. Down-regulation of stathmin was noted to associate with TIEG1 expression, whilst ectopic overexpression of stathmin prevented TIEG1 mediated growth inhibition of tumor cells. Small interfering RNAs targeting stathmin inhibited pancreatic cancer cell growth. These suggest that stathmin is a downstream target of TIEG1.
Highly variable biological effects of statins on cancer, non-cancer, and stem cells in vitro
Scientific reports, 2024
Statins, the drugs used for the treatment of hypercholesterolemia, have come into the spotlight not only as chemoadjuvants, but also as potential stem cell modulators in the context of regenerative therapy. In our study, we compared the in vitro effects of all clinically used statins on the viability of human pancreatic cancer (MiaPaCa-2) cells, non-cancerous human embryonic kidney (HEK 293) cells and adipose-derived mesenchymal stem cells (ADMSC). Additionally, the effect of statins on viability of MiaPaCa-2 and ADMSC cells spheroids was tested. Furthermore, we performed a microarray analysis on ADMSCs treated with individual statins (12 μM) and compared the importance of the effects of statins on gene expression between stem cells and pancreatic cancer cells. Concentrations of statins that significantly affected cancer cells viability (< 40 μM) did not affect stem cells viability after 24 h. Moreover, statins that didn´t affect viability of cancer cells grown in a monolayer, induce the disintegration of cancer cell spheroids. The effect of statins on gene expression was significantly less pronounced in stem cells compared to pancreatic cancer cells. In conclusion, the low efficacy of statins on non-tumor and stem cells at concentrations sufficient for cancer cells growth inhibition, support their applicability in chemoadjuvant tumor therapy.
Lipids in health and disease, 2017
Statin treatment of hypercholesterolemia is accompanied also with depletion of the mevalonate intermediates, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) necessary for proper function of small GTPases. These include Ras proteins, prevalently mutated in pancreatic cancer. In our study, we evaluated the effect of three key intermediates of the mevalonate pathway on GFP-K-Ras protein localization and the gene expression profile in pancreatic cancer cells after exposure to individual statins. These effects were tested on MiaPaCa-2 human pancreatic cancer cells carrying a K-Ras activating mutation (G12C) after exposure to individual statins (20 μM). The effect of statins (atorvastatin, lovastatin, simvastatin, fluvastatin, cerivastatin, rosuvastatin, and pitavastatin) and mevalonate intermediates on GFP-K-Ras protein translocation was analyzed using fluorescence microscopy. The changes in gene expression induced in MiaPaCa-2 cells treated with simvastati...