Spatial Trends and Historical Deposition of Mercury in Eastern and Northern Canada Inferred from Lake Sediment Cores (original) (raw)
Related papers
Environmental Science & Technology, 2002
Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation are significant environmental problems of global extent. At regional to global scales, the primary mechanism of Hg contamination is atmospheric Hg transport. Thus, a better understanding of the long-term history of atmospheric Hg cycling and quantification of the sources is critical for assessing the regional and global impact of anthropogenic Hg emissions. Ice cores collected from the Upper Fremont Glacier (UFG), Wyoming, contain a high-resolution record of total atmospheric Hg deposition (ca. 1720-1993). Total Hg in 97 ice-core samples was determined with trace-metal clean handling methods and low-level analytical procedures to reconstruct the first and most comprehensive atmospheric Hg deposition record of its kind yet available from North America. The record indicates major atmospheric releases of both natural and anthropogenic Hg from regional and global sources. Integrated over the past 270-year ice-core history, anthropogenic inputs contributed 52%, volcanic events 6%, and background sources 42%. More significantly, during the last 100 years, anthropogenic sources contributed 70% of the total Hg input. Unlike the 2-7-fold increase observed from preindustrial times (before 1840) to the mid-1980s in sediment-core records, the UFG record indicates a 20-fold increase for the same period. The sediment-core records, however, are in agreement with the last 10 years of this ice-core record, indicating declines in atmospheric Hg deposition.
Atmospheric mercury in the Canadian Arctic. Part I: A review of recent field measurements
Science of The Total Environment, 2014
This paper reviews progress made in the study of the transport, transformation, deposition and reemission of atmospheric Hg in the Canadian Arctic, focusing on field measurements. • Redox processes control the speciation of atmospheric Hg and bromine radicals are the primary oxidant of atmospheric Hg depletion in the spring • It is expected that a smaller fraction of deposited Hg will be reemitted from coastal snowpacks.
Anthropogenic mercury enrichment in remote lakes of northern Qu�bec (Canada)
Water, Air, & Soil Pollution, 1995
In a sub-Arctic region of the province of Quebec, at sites situated 200 to 1400 km away from the closest industrial centers, we find the ubiquitous presence of anthropogenic Hg, reflected by steadily increasing concentrations of this metal in lake sediments, since about 1940, to rates averaging 2.3 times the preindustrial levels. Mercury concentrations in lake sediments were found to be proportional to the amounts of telTestrial organic carbon from the catchment area. It would, therefore, be misleading to derive continental-scale gradients of this pollutant based on Hg concentrations in oligotropbic lake sediments, unless they are normalized to their organic carbon content. Our normalized data for sediments of remote lakes along a 1200 km transect (45 to 55~ clearly indicate that the distribution pattern of long-range Hg contamination is independent of the latitude over the boreal forest domain. This uniform contamination contrasts with that of Pb, which decreases towards the north over the same latitudinal span, away from the industrial centers of the St Lawrence Valley and the U.S. Mid-West.
Atmospheric mercury in the Canadian Arctic. Part II: Insight from modeling
The Science of the total environment, 2015
A review of mercury in the Canadian Arctic with a focus on field measurements is presented in part I (see Steffen et al., this issue). Here we provide insights into the dynamics of mercury in the Canadian Arctic from new and published mercury modeling studies using Environment Canada's mercury model. The model simulations presented in this study use global anthropogenic emissions of mercury for the period 1995-2005. The most recent modeling estimate of the net gain of mercury from the atmosphere to the Arctic Ocean is 75Mgyear(-1) and the net gain to the terrestrial ecosystems north of 66.5° is 42Mgyear(-1). Model based annual export of riverine mercury from North American, Russian and all Arctic watersheds to the Arctic Ocean are in the range of 2.8-5.6, 12.7-25.4 and 15.5-31.0Mgyear(-1), respectively. Analysis of long-range transport events of Hg at Alert and Little Fox Lake monitoring sites indicates that Asia contributes the most ambient Hg to the Canadian Arctic followed by...
Geochimica et Cosmochimica Acta, 2013
Part of the mercury (Hg) entering Arctic ecosystems is believed to be delivered from the atmosphere in snow but this source is difficult to quantify due to limited spatial coverage of Hg data in snow. Here we evaluate the atmospheric deposition, storage and release of total Hg (THg) and monomethyl mercury (MeHg) on Penny ice cap, Baffin Island. This is the first such study in the Baffin region. THg levels in snow and firn (mean = 0.61 ng L À1 ) are comparable to those on High Arctic glaciers but MeHg levels are noticeably higher (mean = 0.11 ng L À1 ). We find little evidence of springtime enhancement of Hg deposition in snow attributable to atmospheric mercury depletion events. Estimated accumulation rates of THg and MeHg in firn are $0.33 and 0.03 lg m À2 a À1 , higher than on High Arctic glaciers, possibly due to higher precipitation on southern Baffin Island. The estimated net annual release of THg by glacial snow and ice melt is small (THg: 1.86 kg; MeHg: 0.18 kg). In the study area, geogenic Hg contributions from sediment-loaded glacial meltwater could be as large or larger than those from melting ice. MeHg levels are very low in meltwater-fed streams and lakes (60.01 ng L À1 ), suggesting that MeHg is released early in the snowmelt season and/or quickly removed from meltwater by various processes. Summer melt and percolation on Penny ice cap remobilise Hg in firn after deposition, and this imposes resolution limits of at least 3 years on depositional trends inferred from ice cores.
Special issue on mercury in Canada's North: Summary and recommendations for future research
Science of The Total Environment, 2015
Important scientific advances have been made over the last decade in identifying the environmental fate of mercury and the processes that control its cycling in the Canadian Arctic. This special issue includes a series of six detailed reviews that summarize the main findings of a scientific assessment undertaken by the Government of Canada's Northern Contaminants Program. It was the first assessment to focus exclusively on mercury pollution in the Canadian Arctic. Key findings, as detailed in the reviews, relate to sources and long-range transport of mercury to the Canadian Arctic, its cycling within marine, freshwater, and terrestrial environments, and its bioaccumulation in, and effects on, the biota that live there. While these accomplishments are significant, the complex nature of the mercury cycle continues to provide challenges in characterizing and quantifying the relationships of mercury sources and transport processes with mercury levels in biota and biological effects of mercury exposure. Of particular concern are large uncertainties in our understanding of the processes that are contributing to increasing mercury concentrations in some Arctic fish and wildlife. Specific recommendations are provided for future research and monitoring of the environmental impacts of anthropogenic mercury emissions, influences of climate change, and the effectiveness of mitigation strategies for mercury in the Canadian Arctic.
Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet
Nature Geoscience
The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km−2 year−1) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km−2 year−1). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year−1), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol y...
Environmental Science & Technology, 2005
We identified some of the sources and sinks of monomethyl mercury (MMHg) and inorganic mercury (HgII) on Ellesmere Island in the Canadian High Arctic. Atmospheric Hg depletion events resulted in the deposition of Hg(II) into the upper layers of snowpacks, where concentrations of total Hg (all forms of Hg) reached over 20 ng/L. However, our data suggest that much of this deposited Hg(II) was rapidly photoreduced to Hg(0) which then evaded back to the atmosphere. As a result, we estimate that net wet and dry deposition of Hg(II) during winter was lower at our sites (0.4-5.9 mg/ha) than wet deposition in more southerly locations in Canada and the United States. We also found quite high concentrations of monomethyl Hg (MMHg) in snowpacks (up to 0.28 ng/L), and at times, most of the Hg in snowpacks was present as MMHg. On the Prince of Wales Icefield near the North Water Polynya, we observed a significant correlation between concentrations of Cl and MMHg in snow deposited in the spring, suggesting a marine source of MMHg. We hypothesize that dimethyl Hg fluxes from the ocean to the atmosphere through polynyas and open leads in ice, and is rapidly photolyzed to MMHg-Cl. We also found that concentrations of MMHg in initial snowmelt on John Evans Glacier (up to 0.24 ng/L) were higher than concentrations of MMHg in the snowpack (up to 0.11 ng/L), likely due to either sublimation of snow or preferential leaching of MMHg from snow during the initial melt phase. This springtime pulse of MMHg to the High Arctic, in conjunction with climate warming and the thinning and melting of sea ice, may be partially responsible for the increase in concentrations of Hg observed in certain Arctic marine mammals in recent decades. Concentrations of MMHg in warm and shallow freshwater ponds on Ellesmere Island were also quite high (up to 3.0 ng/L), leading us to conclude that there are very active regions of microbial Hg(II) methylation in freshwater systems during the short summer season in the High Arctic.