Partial Altruism is Worse than Complete Selfishness in Nonatomic Congestion Games (original) (raw)

Altruism in Congestion Games

Corr, 2008

This paper studies the effects of introducing altruistic agents into atomic congestion games. Altruistic behavior is modeled by a trade-off between selfish and social objectives. In particular, we assume agents optimize a linear combination of personal delay of a strategy and the resulting increase in social cost. Our model can be embedded in the framework of congestion games with player-specific latency functions. Stable states are the Nash equilibria of these games, and we examine their existence and the convergence of sequential best-response dynamics. Previous work shows that for symmetric singleton games with convex delays Nash equilibria are guaranteed to exist. For concave delay functions we observe that there are games without Nash equilibria and provide a polynomial time algorithm to decide existence for symmetric singleton games with arbitrary delay functions. Our algorithm can be extended to compute best and worst Nash equilibria if they exist. For more general congestion games existence becomes NP-hard to decide, even for symmetric network games with quadratic delay functions. Perhaps surprisingly, if all delay functions are linear, then there is always a Nash equilibrium in any congestion game with altruists and any better-response dynamics converges. In addition to these results for uncoordinated dynamics, we consider a scenario in which a central altruistic institution can motivate agents to act altruistically. We provide constructive and hardness results for finding the minimum number of altruists to stabilize an optimal congestion profile and more general mechanisms to incentivize agents to adopt favorable behavior.

Altruism in Atomic Congestion Games

Lecture Notes in Computer Science, 2009

This paper studies the effects of introducing altruistic agents into atomic congestion games. Altruistic behavior is modeled by a trade-off between selfish and social objectives. In particular, we assume agents optimize a linear combination of personal delay of a strategy and the resulting social cost. Our model can be embedded in the framework of congestion games with playerspecific latency functions. Stable states are the Nash equilibria of these games, and we examine their existence and the convergence of sequential best-response dynamics. Previous work shows that for symmetric singleton games with convex delays Nash equilibria are guaranteed to exist. For concave delay functions we observe that there are games without Nash equilibria and provide a polynomial time algorithm to decide existence for symmetric singleton games with arbitrary delay functions. Our algorithm can be extended to compute best and worst Nash equilibria if they exist. For more general congestion games existence becomes NP-hard to decide, even for symmetric network games with quadratic delay functions. Perhaps surprisingly, if all delay functions are linear, then there is always a Nash equilibrium in any congestion game with altruists and any better-response dynamics converges.

On the inefficiency of equilibria in congestion games

2005

We present a short geometric proof of the price of anarchy and price of stability results that have recently been established in a series of papers on selfish routing. This novel proof also facilitates two types of new results: On the one hand, we give pseudoapproximation results that depend on the class of allowable cost functions. On the other hand, we offer improved bounds on the inefficiency of Nash equilibria for situations in which the equilibrium travel times are within reasonable limits of the free-flow travel times, a scenario that captures empirical observations in vehicular traffic networks. Our results actually hold in the more general context of congestion games, which provide the framework in which we describe this work.

Tolls for Heterogeneous Selfish Users in Multicommodity Networks and Generalized Congestion Games

2004

We prove the existence of tolls to induce multicommodity, heterogeneous network users that independently choose routes minimizing their own linear function of tolls versus latency to collectively form the traffic pattern of a minimum average latency flow. This generalizes both the previous known results of the existence of tolls for multicommodity, homogeneous users [1] and for single commodity, heterogeneous users .

Bounding the inefficiency of equilibria in nonatomic congestion games

Games and Economic Behavior, 2004

Equilibria in noncooperative games are typically inefficient, as illustrated by the Prisoner's Dilemma. In this paper, we quantify this inefficiency by comparing the payoffs of equilibria to the payoffs of a "best possible" outcome. We study a nonatomic version of the congestion games defined by Rosenthal , and identify games in which equilibria are approximately optimal in the sense that no other outcome achieves a significantly larger total payoff to the players-games in which optimization by individuals approximately optimizes the social good, in spite of the lack of coordination between players. Our results extend previous work on traffic routing games . * We thank Lou Billera for encouraging us to explore generalizations of our previous work on traffic routing, and Robert Rosenthal for introducing us to his congestion games. The first author thanks Amir Ronen for comments on a previous paper [16] that facilitated a generalization of the results therein to the nonatomic congestion games of this paper.

Optimizing the Social Cost of Congestion Games by Imposing Variable Delays

We describe a new coordination mechanism for non-atomic congestion games that leads to a (selfish) social cost which is arbitrarily close to the non-selfish optimal. This mechanism does not incur any additional extra cost, like tolls, which are usually differentiated from the social cost as expressed in terms of delays only.

Symmetry in Network Congestion Games: Pure Equilibria and Anarchy Cost

2005

We study computational and coordination efficiency issues of Nash equilibria in symmetric network congestion games. We first propose a simple and natural greedy method that computes a pure Nash equilibrium with respect to traffic congestion in a network. In this algorithm each user plays only once and allocates her traffic to a path selected via a shortest path computation. We then show that this algorithm works for series-parallel networks when users are identical or when users are of varying demands but have the same best response strategy for any initial network traffic. We also give constructions where the algorithm fails if either the above condition is violated (even for series-parallel networks) or the network is not series-parallel (even for identical users). Thus, we essentially indicate the limits of the applicability of this greedy approach. We also study the price of anarchy for the objective of maximum latency. We prove that for any network of m uniformly related links and for identical users, the price of anarchy is \({\it \Theta}({\frac{{\rm log} m}{{\rm log log} m}}\) ).

Congestion games with malicious players

Games and Economic Behavior, 2009

We study the equilibria of non-atomic congestion games in which there are two types of players: rational players, who seek to minimize their own delay, and malicious players, who seek to maximize the average delay experienced by the rational players. We study the existence of pure and mixed Nash equilibria for these games, and we seek to quantify the impact of the malicious players on the equilibrium. One counterintuitive phenomenon which we demonstrate is the "windfall of malice": paradoxically, when a myopically malicious player gains control of a fraction of the flow, the new equilibrium may be more favorable for the remaining rational players than the previous equilibrium.

On the Inefficiency Ratio of Stable Equilibria in Congestion Games

Lecture Notes in Computer Science, 2009

Price of anarchy and price of stability are the primary notions for measuring the efficiency (i.e. the social welfare) of the outcome of a game. Both of these notions focus on extreme cases: one is defined as the inefficiency ratio of the worst-case equilibrium and the other as the best one. Therefore, studying these notions often results in discovering equilibria that are not necessarily the most likely outcomes of the dynamics of selfish and non-coordinating agents. The current paper studies the inefficiency of the equilibria that are most stable in the presence of noise. In particular, we study two variations of non-cooperative games: atomic congestion games and selfish load balancing. The noisy best-response dynamics in these games keeps the joint action profile around a particular set of equilibria that minimize the potential function. The inefficiency ratio in the neighborhood of these "stable" equilibria is much better than the price of anarchy. Furthermore, the dynamics reaches these equilibria in polynomial time. Our observations show that in the game environments where a small noise is present, the system as a whole works better than what a pessimist may predict. They also suggest that in congestion games, introducing a small noise in the payoff of the agents may improve the social welfare.