IS26Associated In4Type Integrons Forming Multiresistance Loci in Enterobacterial Plasmids (original) (raw)

Unusual Class 1 Integron-Associated Gene Cassette Configuration Found in IncA/C Plasmids from Salmonella enterica

Antimicrobial Agents and Chemotherapy, 2009

IncA/C plasmids carrying an unusual cassette configuration in a class 1 integron and five further shared resistance genes, aacC4, aphA1, hph, sul2, and tetA(D) were found in Salmonella enterica serovars Senftenberg and Ohio. A deletion formed using a short region of homology in the 5 conserved segment and the orfF cassette created an array with only part of orfF followed by the aadA2 cassette. The IncA/C plasmids were not recoverable by conjugation, but additional conjugative resistance plasmids were present in some strains.

Integrons and Gene Cassettes in the Enterobacteriaceae

Antimicrobial Agents and Chemotherapy, 2001

Integrons were detected in 59 of 120 (49%) urinary isolates of Enterobacteriaceae by PCR using degenerate primers targeted to conserved regions of class 1, 2, and 3 integrase genes. PCR sequencing analysis of the cassette arrays revealed a predominance of cassettes that confer resistance to the aminoglycosides and trimethoprim.

Distribution of Class 1 Integrons with IS26-Mediated Deletions in Their 3′-Conserved Segments in Escherichia coli of Human and Animal Origin

PLoS ONE, 2010

Class 1 integrons play a role in the emergence of multi-resistant bacteria by facilitating the recruitment of gene cassettes encoding antibiotic resistance genes. 512 E. coli strains sourced from humans (n = 202), animals (n = 304) and the environment (n = 6) were screened for the presence of the intI1 gene. In 31/79 integron positive E. coli strains, the gene cassette regions could not be PCR amplified using standard primers. DNA sequence analysis of 6 serologically diverse strains revealed atypical integrons harboured the dfrA5 cassette gene and only 24 bp of the integron 39-conserved segment (CS) remained, due to the insertion of IS26. PCR targeting intI1 and IS26 followed by restriction fragment length polymorphism (RFLP) analysis identified the integron-dfrA5-IS26 element in 27 E. coli strains of bovine origin and 4 strains of human origin. Southern hybridization and transformation studies revealed the integron-dfrA5-IS26 gene arrangement was either chromosomally located or plasmid borne. Plasmid location in 4/9 E. coli strains and PCR linkage of Tn21 transposition genes with the intI1 gene in 20/31 strains, suggests this element is readily disseminated by horizontal transfer.

Translocation of Integron-Associated Resistance in a Natural System: Acquisition of Resistance Determinants by Inc P and Inc W Plasmids from Salmonella enterica Typhimurium DT104

Microbial Drug Resistance, 2002

Salmonella enterica Typhimurium DT104, 961368, a veterinary field isolate that encodes a chromosomal cluster of resistance genes as well as two integrons, was used to study the mobility of resistance cassettes (aadA2 and pse-1) and nonintegron-associated resistance determinants (chloramphenicol and tetracycline). A range of natural plasmids was used as targets for the translocation of resistance. Plasmids that acquired resistance from the DT104 chromosome were segregated by conjugation into Escherichia coli K12. Plasmids R751, R388, and RP4::Tn7 acquired several combinations of resistance determinant (including single cassettes) at frequencies comparable with transposition. RP4 and pOG660 did not acquire any determinants from DT104. Phenotypic and PCR-based analysis of all the transconjugants that were translocated-both cassettes and more complex combinations of determinants-was carried out to determinate the genetic content. Translocation to R751 and R388 was associated with the loss of the indigenous trimethoprim cassette to both plasmids and also acquisition of sulfonamide resistance by R751 and RP4::Tn7, which indicated movement of the 39 terminus of one or both of the DT104 integrons. Sequencing of the R751 transconjugants confirmed these findings and showed that the translocation of streptomycin and ampicillin cassettes was associated with the precise excision of dhfrIIc and orfD cassettes. Furthermore, the translocation of multiple determinants occurred by at least two mechanisms, one of which was likely to involve a circular intermediate analogous to a composite cassette. Instability was detected in some of the transconjugants. The implication of the findings for the dissemination of resistance among clinical isolates is discussed. 151 CS), the 39 conserved segment (39-CS) and an internal variable region. The latter is the target for integration of gene cassettes that encode antibiotic resistance with a recombination site termed the attC site or 59-base element (59be). 14,16 The 59-CS encodes the integrase gene (intI), integration site (attI) for the integron and promoters for expression of all downstream gene cassettes. The 39-CS encodes resistance to disinfectant (qacED1) and sulfonamide (sul1) in class 1 integrons. Collis and Hall 6 showed that cassette excision occurred as a covalently closed circular molecule. Furthermore, these authors confirmed, by sequencing the integrons, that the integration and excision of gene cassettes were site-specific recombination events catalyzed by the integrase. The free circular gene cas-

Molecular characterization of InJR06, a class 1 integron located in a conjugative plasmid of Salmonella enterica ser. Typhimurium

International microbiology : the official journal of the Spanish Society for Microbiology, 2005

The presence of class 1, 2, and 3 integrons was investigated in four pediatric isolates of Salmonella enterica ser. Typhimurium (S. Typhimurium). A class 1 integron was detected in one S. Typhimurium strain, the only one that also showed resistance to various aminoglycoside antibiotics. This integron, called InJR06, and the aminoglycoside resistance determinants were located in pS06, a large (> or = 55 kb) conjugative plasmid. A single mobile cassette (encoding the aminoglycoside adenylyltransferase ANT(3'')-Ia) was detected in the variable region of InJR06, while the architecture of the attI1 and attC sites was conserved.

Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria

Journal of Bacteriology, 1992

Many multiresistance plasmids and transposons of gram-negative bacteria carry related DNA elements that appear to have evolved from a common ancestor by site-specific integration of discrete cassettes containing antibiotic resistance genes or sequences of unknown function. The site of integration is flanked by conserved segments coding for an integraselike protein and for sulfonamide resistance, respectively. These segments, together with the antibiotic resistance genes between them, have been termed integrons (H. W. Stokes and R. M. Hall, Mol. Microbiol. 3:1669-1683, 1989). We report here the characterization of an integron, In0, from Pseudomonas aeruginosa plasmid pVS1, which has an unoccupied integration site and hence may be an ancestor of more complex integrons. Codon usage of the integrase (int) and sulfonamide resistance (sul1) genes carried by this integron suggests a common origin. This contrasts with the codon usage of other antibiotic resistance genes that were presumably...

Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts

PloS one, 2013

Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect rep...

Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant

FEMS Microbiology Ecology, 2000

The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three L-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment.