Enzyme-Triggered Folding of Hydrogels: Toward a Mimic of the Venus Flytrap (original) (raw)
External triggers such as pH or temperature can induce hydrogels to swell or shrink rapidly. Recently, these triggers have also been used to alter the three-dimensional (3-D) shapes of gels: for example, a flat gel sheet can be induced to fold into a tube. Self-folding gels are reminiscent of natural structures such as the Venus flytrap, which folds its leaves to entrap its prey. They are also of interest for applications in sensing or microrobotics. However, to advance the utility of self-folding gels, the range of triggers needs to be expanded beyond the conventional ones. Toward this end, we have designed a class of gels that change shape in response to very low concentrations of specific biomolecules. The gels are hybrids of three different constituents: (A) polyethylene glycol diacrylate (PEGDA); (B) gelatin methacrylate-co-polyethylene glycol dimethacrylate (GelMA-co-PEGDMA); and (C) N-isopropylacrylamide (NIPA). The thin-film hybrid is constructed as a bilayer or sandwich of ...