Reorganization of supramammillary–hippocampal pathways in the rat pilocarpine model of temporal lobe epilepsy: evidence for axon terminal sprouting (original) (raw)
Related papers
Intrinsic connections of the macaque monkey hippocampal formation: I. Dentate gyrus
Journal of comparative neurology, 2008
We have carried out a detailed analysis of the intrinsic connectivity of the Macaca fascicularis monkey hippocampal formation. Here we report findings on the topographical organization of the major connections of the dentate gyrus. Localized anterograde tracer injections were made at various rostrocaudal levels of the dentate gyrus and we investigated the three-dimensional organization of the mossy fibers, the associational projection, and the local projections. The mossy fibers travel throughout the transverse extent of CA3 at the level of the cells of origin. Once the mossy fibers reach the distal portion of CA3, they change course and travel for 3-5 mm rostrally. The associational projection, originating from cells in the polymorphic layer, terminates in the inner third of the molecular layer. The associational projection, while modest at the level of origin, travels both rostrally and caudally from the injection site for as much as 80 percent of the rostrocaudal extent of the dentate gyrus. The caudally directed projection is typically more extensive and denser than the rostrally directed projection. Cells in the polymorphic layer originate local projections that terminate in the outer two-thirds of the molecular layer. These projections are densest at the level of the cells of origin, but also extend several millimeters rostrocaudally. Overall, the topographical organization of the intrinsic connections of the monkey dentate gyrus is largely similar to that of the rat. Such extensive longitudinal connections have the potential for integrating information across much of the rostrocaudal extent of the dentate gyrus.
Connection matrix of the hippocampal formation: I. The dentate gyrus
The hippocampal formation presents a special opportunity for realistic neural modeling since its structure, connectivity, and physiology are better understood than that of other cortical components. A review of the quantitative neuroanatomy of the rodent dentate gyrus (DG) is presented in the context of the development of a computational model of its connectivity. The DG is a three-layered folded sheet of neural tissue. This sheet is represented as a rectangle, having a surface area of 37 mm2 and a septotemporal length of 12 mm. Points, representing cell somata, are distributed in the model rectangle in a roughly uniform fashion. Synaptic connectivity is generated by assigning each presynaptic cell a spatial zone representing its axonal arbor. For each postsynaptic cell, a list of potential presynaptic cells is compiled, based on which arbor zones the given postsynaptic cell falls within. An appropriate number of presynaptic inputs are then selected at random. The principal cells of the DG, the granule cells, are represented in the model, as are non-principal cells, including basket cells, chandelier cells, mossy cells, and GABAergic peptidergic polymorphic (GPP) cells. The neurons of layer II of the entorhinal cortex are included also. The DG receives its main extrinsic input from these cells via the perforant path. The basket cells, chandelier cells, and GPP cells receive perforant path and granule cell input and exert both feedforward and feedback inhibition onto the granule cells. Mossy cells receive converging input from granule cells and send their output back primarily to distant septotemporal levels, where they contact both granule cells and non-principal cells. To permit numerical simulations, the model must be scaled down while preserving its anatomical structure. A variety of methods for doing this exist. Hippocampal allometry provides valuable clues in this regard.
Journal of Comparative Neurology, 1977
The efferent connections of the hippocampal formation of the rat have been re-examined autoradiographically following the injection of small quantities of 3H-amino acids (usually 3H-proline) into different parts of Ammon's horn and the adjoining structures. The findings indicate quite clearly that each component of the hippocampal formation has a distinctive pattern of efferent connections and that each component of the fornix system arises from a specific subdivision of the hippocampus or the adjoining cortical fields. Thus, the precommissural fornix has been found to originate solely in fields CA1-3 of the hippocampus proper and from the subiculum; the projection to the anterior nuclear complex of the thalamus arises more posteriorly in the pre- and/or parasubiculum and the postsubicular area; the projection to the mammillary complex which comprises a major part of the descending columns of the fornix has its origin in the dorsal subiculum and the pre- and/or parasubiculum; and finally, the medial cortico-hypothalamic tract arises from the ventral subiculum. The lateral septal nuclei (and the adjoining parts of the posterior septal complex) constitute the only subcortical projection field of the pyramidal cells in fields CA1-3 of Ammon's horn. There is a rostral extension of the pre-commissural fornix to the bed nucleus of the stria terminalis, the nucleus accumbens, the medial and posterior parts of the anterior olfactory nucleus, the taenia tecta, and the infralimbic area, which appears to arise from the temporal part of field CA, or the adjacent part of the ventral subiculum. The projection of Ammon's horn upon the lateral septal complex shows a high degree of topographic organization (such that different parts of fields CA1 and CA3 project in an ordered manner to different zones within the lateral septal nucleus). The septal projection of “CA2” and field CA3 is bilateral, while that of field CA1 is strictly unilateral. In addition to its subcortical projections, the hippocampus has been found to give rise to a surprisingly extensive series of intracortical association connections. For example, all parts of fields CA1, CA2 and CA3 project to the subiculum, and at least some parts of these fields send fibers to the pre- and parasubiculum, and to the entorhinal, perirhinal, retrosplenial and cingulate areas. From the region of the preand parasubiculum there is a projection to the entorhinal cortex and the parasubiculum of both sides. That part of the postsubiculum (= dorsal part of the presubiculum) which we have examined has been found to project to the cingulate and retrosplenial areas ipsilaterally, and to the entorhinal cortex and parasubiculum bilaterally.
The Anatomy of the Hippocampus
Cerebral Ischemia, 2021
The hippocampal formation is responsible for memory processing, learning, spatial navigation, and emotions. It includes the indusium griseum, longitudinal striae, gyrus fasciolaris, hippocampus proper (cornu ammonis, dentate gyrus, and subiculum) and part of the uncus. The hippocampus has the archipallial cortex and is formed by the infoldings of the dentate gyrus, cornu ammonis and subiculum. The dentate gyrus is a narrow crenated strip of grey matter. The dentate gyrus consists of three layers, from the outside in: the molecular layer, granular layer, and polymorphic layer. The granular neurons receive input from the parahippocampal gyrus (entorhinal cortex) via the perforant pathway. The granular neurons send mossy fibers to the apical dendrites of pyramidal cells present in the cornu ammonis. The axons of hippocampal pyramidal cells form a sheet of white fibers known as the alveus which continues as fimbria and fornix. The fornix projects into the septal area. From the 2 septal area few fibers synapse into the cingulate gyrus which returns to the hippocampus. The neuronal intrinsic circuit, known as the Papez circuit of the hippocampus, plays a crucial role in the memory processing.
Structural and functional asymmetry in the normal and epileptic rat dentate gyrus
The Journal of Comparative Neurology, 2002
The rat dentate gyrus is usually described as relatively homogeneous. Here, we present anatomic and physiological data which demonstrate that there are striking differences between the supra-and infrapyramidal blades after status epilepticus and recurrent seizures. These differences appear to be an accentuation of a subtle asymmetry present in normal rats. In both pilocarpine and kainic acid models, there was greater mossy fiber sprouting in the infrapyramidal blade. This occurred primarily in the middle third of the hippocampus. Asymmetric sprouting was evident both with Timm stain as well as antisera to brain-derived neurotrophic factor (BDNF) or neuropeptide Y (NPY). In addition, surviving NPY-immunoreactive hilar neurons were distributed preferentially in the suprapyramidal region of the hilus. Extracellular recordings from infrapyramidal sites in hippocampal slices of pilocarpine-treated rats showed larger population spikes and weaker paired-pulse inhibition in response to perforant path stimulation relative to suprapyramidal recordings. A single stimulus could evoke burst discharges in infrapyramidal granule cells but not suprapyramidal blade neurons. BDNF exposure led to spontaneous epileptiform discharges that were larger in amplitude and longer lasting in the infrapyramidal blade. Stimulation of the infrapyramidal molecular layer evoked larger responses in area CA3 than suprapyramidal stimulation. In slices from the temporal pole, in which anatomic evidence of asymmetry waned, there was little evidence of physiological asymmetry either. Of interest, some normal rats also showed signs of greater evoked responses in the infrapyramidal blade, and this could be detected with both microelectrode recording and optical imaging techniques. Although there were no signs of hyperexcitability in normal rats, the data suggest that there is some asymmetry in the normal dentate gyrus and this asymmetry is enhanced by seizures. Taken together, the results suggest that supra-and infrapyramidal blades of the dentate gyrus could have different circuit functions and that the infrapyramidal blade may play a greater role in activating the hippocampus.
History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation
Bratislavské lekárske listy, 2006
The complex structures in the cerebral hemispheres is included under one term, the limbic system. Our conception of this system and its special functions rises from the comparative neuroanatomical and neurophysiological studies. The components of the limbic system are the hippocampus, gyrus parahippocampalis, gyrus dentatus, gyrus cinguli, corpus amygdaloideum, nuclei anteriores thalami, hypothalamus and gyrus paraterminalis Because of its unique macroscopic and microscopic structure, the hippocampus is a conspicuous part of the limbic system. During phylogenetic development, the hippocampus developed from a simple cortical plate in amphibians into complex three-dimensional convoluted structure in mammals. In the last few decades, structures of the limbic system were extensively studied. Attention was directed to the physiological functions and pathological changes of the hippocampus. Experimental studies proved that the hippocampus has a very important role in the process of learni...
Neurophysiologie Clinique/Clinical Neurophysiology, 1992
Hippocampal-based epileptiform activity may reach the basal ganglia via the nucleus accumbens. Previous data suggested that caudate nucleus is able to influence hippocampal epilepsy, probably sending a projection to the septum. In order to test the hypothesis of a retrograde activation of accumbens-caudate pathway in hippoc~pal regulation, we electrically stimulated both caudate rmcleus~ and nucleus accumbens and studied modifications of hippocampal EEG in the feline focal' epilepsy model. We also performed bilateral electrolytic lesion of nucleus accumbens and repeated caudate stimulation. Results showed that nucleus accumbens stimulation was ineffective in modifying hippocampal epilepsy ; on the contrary, caudate stimulation caused a statistically significant decrease of hippocampal spike fiequency and amplitude. On the other hand, in accumbens-lesioned animals caudate activation consistently reduced hi[?pocampal epilepsy to a s~gnificant degree. As the caudate nucleus influences hippocampal activity and the septum may constitute a relay station of this functional relation, a possibility was tested concerning a GABAergic mediation. To this end, after a stable caudate-induced effect was reached, an intraseptal microinjection of picrotoxin (GABA receptor antagonist) was made and caudate stimulation repeated at the same parameters. Such a study showed that after intraseptal picrotoxin, caudate stimulation failed to elicit any type of modification of hippocampal activity. Experimentat find'irtgs support the notion that the striatal modulation on hippocampus is mediated by an anterograde rather than a retrograde pathway, and underline the possibility of a GABAergic caudate-septal influence.
1990 Wouterlood et al Reuniens-hippocampus
In order to study the morphological substrate of possible thalamic influence on the cells of origin and area of termination of the projection from the entorhinal cortex to the hippocampal formation, we examined the pathways, terminal distribution, and ultrastructure of the innervation of the hippocampal formation and parahippocampal region by the nucleus reuniens of the thalamus (NRT). We employed anterograde tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L). Injections of PHA-L in the NRT produce fiber and terminal labeling in the stratum lacunosum-moleculare of field CAI of the hippocampus, the molecular layer of the subiculum, layers I and III/IV of the dorsal subdivision of the lateral entorhinal area (DLEA), and layers I and 111-VI of the ventral lateral (VLEA) and medial (MEA) divisions of the entorhinal cortex. Terminal labeling is most dense in the stratum lacunosum-moleculare of field CA1, the molecular layer of the ventral part of the subiculum, MEA, and layer I of the perirhinal cortex. In layer I of the caudal part of DLEA and in MEA, terminal labeling is present in clusters. Injections in the rostral half of the NRT produce the same distribution in the hippocampal region as those in the caudal half of the NRT, although the projections from the rostral half of the NRT are much stronger. A topographical organization is present in the projections from the head of the NRT, so that the dorsal part projects predominantly to dorsal parts of field CA1 and the subiculum and to lateral parts of the entorhinal cortex, whereas the ventral part projects in greatest volume to ventral parts of field CA1 and the subiculum and to medial parts of the entorhinal cortex.
Efferent connections of the hippocampal formation in the rat
Brain Research, 1977
In this investigation the projections of the hippocampal formation to the septal area and hypothalamus were studied in the rat with the combined use of all-amino acid radioautography and horseradish peroxidase histochemistry.