Internalization of Fluorescent Biomolecules for Long-Lived Single-Molecule Observation in Living Bacteria (original) (raw)
Related papers
Metalloregulators regulate transcription in response to metal ions. Many studies have provided insights into how transcription is activated upon metal binding by MerR-family metalloregulators. In contrast, how transcription is turned off after activation is unclear. Turning off transcription promptly is important, however, as the cells would not want to continue expressing metal resistance genes and thus waste energy after metal stress is relieved. Using single-molecule FRET measurements we studied the dynamic interactions of the copper efflux regulator (CueR), a Cu þ -responsive MerR-family metalloregulator, with DNA. Besides quantifying its DNA binding and unbinding kinetics, we discovered that CueR spontaneously flips its binding orientation at the recognition site. CueR also has two different binding modes, corresponding to interactions with specific and nonspecific DNA sequences, which would facilitate recognition localization. Most strikingly, a CueR molecule coming from solution can directly substitute for a DNA-bound CueR or assist the dissociation of the incumbent CueR, both of which are unique examples for any DNA-binding protein. The kinetics of the direct protein substitution and assisted dissociation reactions indicate that these two unique processes can provide efficient pathways to replace a DNA-bound holo-CueR with apo-CueR, thus turning off transcription promptly and facilely.
Structure (London, England : 1993), 2017
CueR (Cu export regulator) is a metalloregulator protein that "senses" Cu(I) ions with very high affinity, thereby stimulating DNA binding and the transcription activation of two other metalloregulator proteins. The crystal structures of CueR when unbound or bound to DNA and a metal ion are very similar to each other, and the role of CueR and Cu(I) in initiating the transcription has not been fully understood yet. Using double electron-electron resonance (DEER) measurements and structure modeling, we investigate the conformational changes that CueR undergoes upon binding Cu(I) and DNA in solution. We observe three distinct conformations, corresponding to apo-CueR, DNA-bound CueR in the absence of Cu(I) (the "repression" state), and CueR-Cu(I)-DNA (the "activation" state). We propose a detailed structural mechanism underlying CueR's regulation of the transcription process. The mechanism explicitly shows the dependence of CueR activity on copper, ther...
Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors
Molecular Microbiology, 2010
The evolution of bacterial regulatory circuits often involves duplication of genes encoding transcription factors that may suffer both modifications in their detected signals, as well as, rewiring of their target operators. This, and subsequent horizontal gene transfer events contribute to generate a diverse array of regulatory pathways. In Salmonella, two homologous transcription factors CueR and GolS are responsible for Cu and Au sensing and resistance respectively. They share similarities not only in their sequence but also in their target binding sites, although they cluster separately among MerRmonovalent metal sensors. Here, we demonstrate that CueR and GolS can selectively distinguish their target binding sites by recognizing bases at positions 3Ј and 3 of their cognate operators. Swap of these bases results in switching regulator dependency. The differences in promoter architecture plus the environmentally controlled regulator's cytoplasmic availability warrant intra-regulon regulator-operator selectivity, and the proper response to metal injury. Furthermore, the presence of the distinctive operators' bases is widely extended among the two groups of MerRmonovalent metal sensors, providing evidence of the co-evolution of these factors and their target operators. This approach allows the prediction of regulator's dependency and the identification of transcription modules among groups of homologous transcription factors.
Proceedings of the National Academy of Sciences of the United States of America, 2015
Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ(70)-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator-DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)-a Cu(+)-responsive MerR-family metalloregulator-modulates RNAP interactions with CueR's cognate suboptimal promoter PcopA, and how RNAP affects CueR-PcopA interactions. We find that RNAP can form two noninterconverting complexes at PcopA in the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction ...
Molecular Microbiology, 2010
The evolution of bacterial regulatory circuits often involves duplication of genes encoding transcription factors that may suffer both modifications in their detected signals, as well as, rewiring of their target operators. This, and subsequent horizontal gene transfer events contribute to generate a diverse array of regulatory pathways. In Salmonella, two homologous transcription factors CueR and GolS are responsible for Cu and Au sensing and resistance respectively. They share similarities not only in their sequence but also in their target binding sites, although they cluster separately among MerR-monovalent metal sensors. Here, we demonstrate that CueR and GolS can selectively distinguish their target binding sites by recognizing bases at positions 3′ and 3 of their cognate operators. Swap of these bases results in switching regulator dependency. The differences in promoter architecture plus the environmentally controlled regulator's cytoplasmic availability warrant intra-regulon regulator–operator selectivity, and the proper response to metal injury. Furthermore, the presence of the distinctive operators' bases is widely extended among the two groups of MerR-monovalent metal sensors, providing evidence of the co-evolution of these factors and their target operators. This approach allows the prediction of regulator's dependency and the identification of transcription modules among groups of homologous transcription factors.
Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity
IscR from Escherichia coli is an unusual metalloregulator in that it globally regulates transcription by recognizing two different DNA motifs in a Fe-S dependent manner. Here, we report structural and biochemical studies of IscR, which suggest remodeling of the protein-DNA interface upon Fe-S ligation broadens the DNA binding specificity from binding a type 2 motif to both type 1 and 2 motifs. Analysis of an apo-IscR variant with relaxed target-site discrimination identified a key residue in wild-type apo-IscR that we propose makes unfavorable interactions with a type 1 motif. Upon Fe-S binding, these interactions are apparently removed, thereby allowing holo-IscR to bind both type 1 and 2 motifs. These data suggest a novel mechanism of ligand-mediated DNA site recognition, whereby metallocluster ligation relocates a protein specificity determinant to expand DNA target site selection, allowing a broader transcriptomic response by holo-IscR. . S. Rajagopalan and S.J. Teter contributed equally to the work Accession codes 4HF0 Structure of unbound apo-IscR 4HF1 Structure of IscR bound to the hya site 4HF2 Structure of IscR-E43A mutant bound to the hya site
Proceedings of the National Academy of Sciences, 2020
Metal detoxification is essential for bacteria’s survival in adverse environments and their pathogenesis in hosts. Understanding the underlying mechanisms is crucial for devising antibacterial treatments. In the Gram-negative bacterium Escherichia coli , membrane-bound sensor CusS and its response regulator CusR together regulate the transcription of the cus operon that plays important roles in cells’ resistance to copper/silver, and they belong to the two-component systems (TCSs) that are ubiquitous across various organisms and regulate diverse cellular functions. In vitro protein reconstitution and associated biochemical/physical studies have provided significant insights into the functions and mechanisms of CusS–CusR and related TCSs. Such studies are challenging regarding multidomain membrane proteins like CusS and also lack the physiological environment, particularly the native spatial context of proteins inside a cell. Here, we use stroboscopic single-molecule imaging and trac...
Single-Molecule Dynamics and Mechanisms of Metalloregulators and Metallochaperones
Understanding how cells regulate and transport metal ions is an important goal in the field of bioinorganic chemistry, a frontier research area that resides at the interface of chemistry and biology. This Current Topic reviews recent advances from the authors' group in using single-molecule fluorescence imaging techniques to identify the mechanisms of metal homeostatic proteins, including metalloregulators and metallochaperones. It emphasizes the novel mechanistic insights into how dynamic protein−DNA and protein−protein interactions offer efficient pathways via which MerR-family metalloregulators and copper chaperones can fulfill their functions. This work also summarizes other related single-molecule studies of bioinorganic systems and provides an outlook toward single-molecule imaging of metalloprotein functions in living cells. for collaborations on the research reviewed here.
Nucleic Acids Research
Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoR(Sl)) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoR(Sl) binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5'-TAC/GTA-3' inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoR(Sl)-DNA interaction ...
Evolution of Metal(loid) Binding Sites in Transcriptional Regulators
Journal of Biological Chemistry, 2008
Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three-or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys 15 , Cys 16 , and Cys 55 . This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.