A mechanism for asymmetric segregation of age during yeast budding (original) (raw)

Physical principles and functional consequences of nuclear compartmentalization in budding yeast

Current Opinion in Cell Biology, 2019

One striking feature of eukaryotic nuclei is the existence of discrete regions in which specific factors concentrate while others are excluded, thus forming microenvironments with different molecular compositions and biological functions. These domains are often referred to as sub-compartments even though they are not membrane enclosed. Despite their functional importance the physical nature of these structures remains largely unknown. Here we describe how the Saccharomyces cerevisiae nucleus is compartmentalized and discuss possible physical models underlying the formation and maintenance of chromatin associated sub-compartments. Focusing on three particular examples: the nucleolus, silencing foci and repair foci, we discuss the biological implications of these different models as well as possible approaches to challenge them in living cells.

Nuclear Geometry and Rapid Mitosis Ensure Asymmetric Episome Segregation in Yeast

Current Biology, 2011

Background: Asymmetric cell division drives the generation of differentiated cells and maintenance of stem cells. In budding yeast, autonomously replicating sequence (ARS) plasmids lacking centromere elements are asymmetrically segregated into the mother cell, where they are thought to contribute to cellular senescence. This phenomenon has been proposed to result from the active retention of plasmids through an interaction with nuclear pores. Results: To investigate the mother-daughter segregation bias of plasmids, we used live-cell imaging to follow the behavior of extrachromosomal DNA. We show that both an excised DNA ring and a centromere-deficient ARS plasmid move freely in the nucleoplasm yet show a strong segregation bias for the mother cell. Computational modeling shows that the geometrical shape of the dividing yeast nucleus and length of mitosis severely restrict the passive diffusion of episomes into daughter nuclei. Predictions based on simulated nuclear division were tested with mutants that extend the length of mitosis. Finally, explaining how various anchors can improve mitotic segregation, we show that plasmid partitioning is improved by tethering the plasmid to segregating structures, such as the nuclear envelope and telomeres. Conclusions: The morphology and brevity of mitotic division in budding yeast impose physical constraints on the diffusion of material into the daughter, obviating the need for a retention mechanism to generate rejuvenated offspring.

F1000Prime recommendation of Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast

F1000 - Post-publication peer review of the biomedical literature

Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors-including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material-are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.

Nuclear Compartmentalization Is Abolished during Fission Yeast Meiosis

Current Biology, 2010

In eukaryotic cells, the nuclear envelope partitions the nucleus from the cytoplasm. The fission yeast Schizosaccharomyces pombe undergoes closed mitosis in which the nuclear envelope persists rather than being broken down, as in higher eukaryotic cells . It is therefore assumed that nucleocytoplasmic transport continues during the cell cycle . Here we show that nuclear transport is, in fact, abolished specifically during anaphase of the second meiotic nuclear division. During that time, both nucleoplasmic and cytoplasmic proteins disperse throughout the cell, reminiscent of the open mitosis of higher eukaryotes, but the architecture of the S. pombe nuclear envelope itself persists. This functional alteration of the nucleocytoplasmic barrier is likely induced by spore wall formation, because ectopic induction of sporulation signaling leads to premature dispersion of nucleoplasmic proteins. A photobleaching assay demonstrated that nuclear envelope permeability increases abruptly at the onset of anaphase of the second meiotic division. The permeability was not altered when sporulation was inhibited by blocking the trafficking of forespore-membrane vesicles from the endoplasmic reticulum to the Golgi. The evidence indicates that yeast gametogenesis produces vesicle transport-mediated forespore membranes by inducing nuclear envelope permeabilization.

Septins have a dual role in controlling mitotic exit in budding yeast

Current biology, 2003

In Saccharomyces cerevisiae, the spindle position checkpoint ensures that cells do not exit mitosis until the mitotic spindle moves into the mother/bud neck and thus guarantees that each cell receives one nucleus [1-6]. Mitotic exit is controlled by the small G protein Tem1p. Tem1p and its GTPase activating protein (GAP) Bub2p/Bfa1p are located on the daughter-bound spindle pole body. The GEF Lte1p is located in the bud. This segregation helps keep Tem1p in its inactive GDP state until the spindle enters the neck. However, the checkpoint functions without Lte1p and apparently senses cytoplasmic microtubules in the mother/bud neck [7-9]. To investigate this mechanism, we examined mutants defective for septins, which compose a ring at the neck [10]. We found that the septin mutants sep7Delta and cdc10Delta are defective in the checkpoint. When movement of the spindle into the neck was delayed, mitotic exit occurred, inappropriately leaving both nuclei in the mother. In sep7Delta and cdc10Delta mutants, Lte1p is mislocalized to the mother. In sep7Delta, but not cdc10Delta, mutants, inappropriate mitotic exit depends on Lte1p. These results suggest that septins serve as a diffusion barrier for Lte1p, and that Cdc10p is needed for the septin ring to serve as a scaffold for a putative microtubule sensor.

Altering nuclear pore complex function impacts longevity and mitochondrial function in S. cerevisiae

The Journal of cell biology, 2015

The eukaryotic nuclear permeability barrier and selective nucleocytoplasmic transport are maintained by nuclear pore complexes (NPCs), large structures composed of ∼30 proteins (nucleoporins [Nups]). NPC structure and function are disrupted in aged nondividing metazoan cells, although it is unclear whether these changes are a cause or consequence of aging. Using the replicative life span (RLS) of Saccharomyces cerevisiae as a model, we find that specific Nups and transport events regulate longevity independent of changes in NPC permeability. Mutants lacking the GLFG domain of Nup116 displayed decreased RLSs, whereas longevity was increased in nup100-null mutants. We show that Nup116 mediates nuclear import of the karyopherin Kap121, and each protein is required for mitochondrial function. Both Kap121-dependent transport and Nup116 levels decrease in replicatively aged yeast. Overexpression of GSP1, the small GTPase that powers karyopherin-mediated transport, rescued mitochondrial an...

Structure and Function in the Budding Yeast Nucleus

Genetics, 2012

Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function. Abstract 107 108 Features of the Yeast Nucleus 108 Unique and conserved characteristics 108 Nuclear envelope and nuclear pore complex 109 Long-range chromosome organization 111 Chromatin dynamics 112 DNA-based compartments 112 Nucleolus: 112 Telomere foci-assemblies of repetitive DNA and silencing factors: 113 tRNA genes: 114 Replication foci: 114 Continued

Depletion of the Origin Recognition Complex Subunits Delays Aging in Budding Yeast

Cells

Precise DNA replication is pivotal for ensuring the accurate inheritance of genetic information. To avoid genetic instability, each DNA fragment needs to be amplified only once per cell cycle. DNA replication in eukaryotes starts with the binding of the origin recognition complex (ORC) to the origins of DNA replication. The genes encoding ORC subunits have been conserved across eukaryotic evolution and are essential for the initiation of DNA replication. In this study, we conducted an extensive physiological and aging-dependent analysis of heterozygous cells lacking one copy of ORC genes in the BY4743 background. Cells with only one copy of the ORC genes showed a significant decrease in the level of ORC mRNA, a delay in the G1 phase of the cell cycle, and an extended doubling time. Here, we also show that the reducing the levels of Orc1-6 proteins significantly extends both the budding and average chronological lifespans. Heterozygous ORC/orcΔ and wild-type diploid cells easily unde...

Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding yeast

bchm, 2011

Septins are essential for cytokinesis in Saccharomyces cerevisiae, but their precise roles remain elusive. Currently, it is thought that before cytokinesis, the hourglass-shaped septin structure at the mother-bud neck acts as a scaffold for assembly of the actomyosin ring (AMR) and other cytokinesis factors. At the onset of cytokinesis, the septin hourglass splits to form a double ring that sandwiches the AMR and may function as diffusion barriers to restrict diffusible cytokinesis factors to the division site. Here, we show that in cells lacking the septin Cdc10 or the septin-associated protein Bud4, the septins form a ring-like structure at the mother-bud neck that fails to re-arrange into a double ring early in cytokinesis. Strikingly, AMR assembly and constriction, the localization of membrane-trafficking and extracellular-matrix-remodeling factors, cytokinesis, and cell-wall-septum formation all occur efficiently in cdc10Δ and bud4Δ mutants. Thus, diffusion barriers formed by t...