Integrable and continuous solutions of a nonlinear quadratic integral equation (original) (raw)

Abstract

We are concerned here with a nonlinear quadratic integral equation of Volterra type. The existence of at least one L 1 − positive solution will be proved under the Carathèodory condition. Secondly we will make a link between Peano condition and Carathèodory condition to prove the existence of at least one positive continuous solution. Finally the existence of the maximal and minimal solutions will be proved.

Figures (2)

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (9)

  1. J. Banas, A. Martininon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl. 47 (2004), 271 -279.
  2. J.Banas, M. Lecko, W. G. El-Sayed, Existence theorems of some quadratic integral equation, J.Math. Anal. Appl. 227 (1998), 276 -279.
  3. J.Banas, K. Goebel, Measure of noncompactness in Banach space, Lecture Note in Pure and Appl. Math. , vol. 60. Dekker, New York, 1980.
  4. J.Banas, B. Rzepka Monotonic solutions of a quadratic integral equations of fractional order J.Math. Anal. Appl. 332 (2007), 1371 -1378.
  5. R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathemat- ics Academic Press, 1977.
  6. K. Deimling, Nonlinear Functional Analysis, Springer -Verlag, Berlin, 1985. EJQTDE, 2008 No. 25, p. 9
  7. A.M.A. El-Sayed, F.M. Gaafar and H.H.G Hashim, On the maximal and minimal solutions of arbitrary-orders nonlinear functional integral and differential equations, Math. Sci. Res. J. 8(11) (2004), 336-348.
  8. V.Lakshmikantham and S. Leela. Differential and Integral Inequalities, Vol. 1, NewYork-London, 1969.
  9. Scorza Dragoni G., Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un´altra variabile, Rend. Sem. Mat. Univ. Padova 17 (1948), 102-106. (Received April 30, 2008)