Morphology, nectar characteristics and avian pollinators in five Andean Puya species (Bromeliaceae) (original) (raw)

Phylogenetic analysis of interspecific variation in nectar of hummingbird-visited plants

Journal of evolutionary biology, 2007

We tested whether phylogeny, flower size and/or altitude were significant predictors of interspecific variation in nectar production of hummingbird-visited plants in an assembled database (289 species, in 22 orders, 56 families and 131 genera). Although the study is focused on hummingbird-pollinated plants (241 plant species), plants with different pollinator syndromes (48 species) are also included in the analyses. Nectar volume secreted in a given time period (usually 24 h) by a given flower, its sugar concentration and corolla length were compiled mainly from the literature. Altitude was also obtained from the original references. Sugar production was computed basically as the product of nectar secretion and sugar concentration, and expressed on a per 24-h basis. All nectar traits and corolla length (all log transformed), as well as altitude, showed statistically significant phylogenetic signal. Both nonphylogenetic and phylogenetically informed (independent contrasts) analyses indicated a highly significant positive correlation between corolla length and both nectar volume and sugar production. In addition, altitude (which is partially a surrogate for temperature) was significantly negatively correlated with both sugar concentration and production. Possible reasons for coadaptation of nectar production and sugar production with corolla length are discussed.

Pollinator type and secondarily climate are related to nectar sugar composition across the angiosperms

Evolutionary Ecology, 2017

Pollinators are important agents of selection on floral traits, including nectar sugar composition. Although it is widely assumed that the proportion of sugars (mainly sucrose, glucose and fructose) in nectar reflects pollinators' physiological limitations and digestive efficiency, the relative impact of pollinators and abiotic factors on nectar sugar composition, as well as the generality of these associations across the angiosperms, remain unknown. We compiled data on nectar sugar composition for [1000 plant species, along with information on flower visitors, plant growth form and latitudinal climatic zone, to provide the first comprehensive assessment of correlates of variation in sugar nectar composition in the angiosperms. After assembling a phylogeny linking all species in the dataset, we estimated the amount of phylogenetic signal in the percentage of sucrose and, by applying phylogenetically-informed multiple regressions, we evaluated whether nectar composition was influenced either by the main pollinator group, plant growth form, or latitudinal climatic zone. The relative importance of each of these factors was then assessed through model selection based on Akaike information criteria and deviance partitioning analysis. Nectar was dominated by sucrose in 56.8% of all the species, glucose in 16.7%, and fructose in 5.5%. Nectar in the remaining species was characterized by similar proportions of the three sugars. Variation in the proportion of sucrose was highest (*70%) at the intrafamily level, and had a significant but low phylogenetic signal, which partially reflects phylogenetic conservatism of the pollinator niche. After controlling for phylogenetic effects, the proportion of sucrose was mainly related to pollinator type and secondarily to climate. Accordingly, this study indicates that nectar sugar composition shows high evolutionary lability and its variation reflects plant-pollinator associations.