High-resolution subglacial topography around Dome Fuji, Antarctica, based on ground-based radar surveys conducted over 30 years (original) (raw)

Summit of the East Antarctic Ice Sheet underlain by thick ice-crystal fabric layers linked to glacial–interglacial environmental change

Geological Society, London, Special Publications, 2017

Ice cores in Antarctica and Greenland reveal ice-crystal fabrics that can be softer under simple shear compared with isotropic ice. Owing to the sparseness of ice cores in regions away from the ice divide, we currently lack information about the spatial distribution of ice fabrics and its association with ice flow. Radio-wave reflections are influenced by ice-crystal alignments, allowing them to be tracked provided reflections are recorded simultaneously in orthogonal orientations (polarimetric measurements). Here, we image spatial variations in the thickness and extent of ice fabric across Dome A in East Antarctica, by interpreting polarimetric radar data. We identify four prominent fabric units, each several hundred metres thick, extending over hundreds of square kilometres. By tracing internal ice-sheet layering to the Vostok ice core, we are able to determine the approximate depth–age profile at Dome A. The fabric units correlate with glacial–interglacial cycles, most noticeably...

Internal structure of the ice sheet between Kohnen station and Dome Fuji, Antarctica, revealed by airborne radio-echo sounding

Annals of Glaciology, 2013

This study aims to demonstrate that deep ice cores can be synchronized using internal horizons in the ice between the drill sites revealed by airborne radio-echo sounding (RES) over a distance of >1000km, despite significant variations in glaciological parameters, such as accumulation rate between the sites. In 2002/03 a profile between the Kohnen station and Dome Fuji deep ice-core drill sites, Antarctica, was completed using airborne RES. The survey reveals several continuous internal horizons in the RES section over a length of 1217 km. The layers allow direct comparison of the deep ice cores drilled at the two stations. In particular, the counterpart of a visible layer observed in the Kohnen station (EDML) ice core at 1054 m depth has been identified in the Dome Fuji ice core at 575 m depth using internal RES horizons. Thus the two ice cores can be synchronized, i.e. the ice at 1560 m depth (at the bottom of the 2003 EDML drilling) is ∼49ka old according to the Dome Fuji age/...