Maskless 3D Ablation of Precise Microhole Structures in Plastics Using Femtosecond Laser Pulses (original) (raw)

Practical uses of femtosecond laser micro-materials processing

Applied Physics A-materials Science & Processing, 2003

We describe several approaches to basic femtosecond machining and materials processing that should lead to practical applications. Included are results on high-throughput deep hole drilling in glasses in ambient air, and precision highspeed micron-scale surface modification of composite materials and chalcogenide glasses. Ablation of soda-lime silicate glass and PbO lead-silicate is studied under three different sets of exposure conditions, for which both the wavelength and pulse duration are varied. Ablation rates are measured below and above the air ionization threshold. The differences observed are explained in terms of self-channeling in the ablated hole. Fabrication of practical devices such as waveguides and gratings is demonstrated in chalcogenide glass.

Femtosecond Laser Ablation of Polymer Thin Films for Nanometer Precision Surface Patterning

Journal of the Korean institute of surface engineering, 2016

Femtosecond laser ablation of ultrathin polymer films on quartz glass using laser pulses of 100 fs and centered at λ=400 nm wavelength has been investigated for nanometer precision thin film patterning. Singleshot ablation craters on films of various thicknesses have been examined by atomic force microscopy, and beam spot diameters and ablation threshold fluences have been determined by square diameter-regression technique. The ablation thresholds of polymer film are about 1.5 times smaller than that of quartz substrate, which results in patterning crater arrays without damaging the substrate. In particular, at a 1/e 2 laser spot diameter of 0.86 µm, the smallest craters of 150-nm diameter are fabricated on 15-nm thick film. The ablation thresholds are not influenced by the film thickness, but diameters of the ablated crater are bigger on thicker films than on thinner films. The ablation efficiency is also influenced by the laser beam spot size, following a w 0q-0.45 dependence.

Femtosecond laser microstructuring of materials

Applied Surface Science, 1998

Femtosecond laser pulses at 790 and 395 nm combined with a scanning galvo mirror system have allowed the ablation of Ž . high quality microchannels in Pyrex, fused silica and silicon 100 for microchemical applications. While Pyrex and fused silica can be micromachined in the near infrared or UV, silicon can only be micromachined to the required depths of ; 50 mm in the near UV where the linear absorption coefficient is much higher. Residual roughness on these materials is -1 mm. q 1998 Elsevier Science B.V.

Processing of metals and semiconductors by a femtosecond laser-based microfabrication system

Commercial and Biomedical Applications of Ultrafast Lasers III, 2003

A microfabrication system with the use of a femtosecond laser was designed for 3D processing of industrially important materials. The system includes a 120 fs, 1 kHz laser; beam delivery and focusing system, systems for automated 3D target motion and real-time imaging of the sample placed in a vacuum chamber. The first tests of the system on the processing of stainless steel and silicon are presented. We established thresholds and regimes of ablation for both materials. It was found that at relatively low laser fluences I < 3-5 J/cm 2 the regime of "gentle" ablation takes place, which is characterized by exceptional quality of the ablated surface, but slow ablation rate (< 25 nm/pulse). This regime is especially efficient for the patterning of markers on steel or silicon surfaces. The "fast" ablation regime at I > 10 J/cm 2 provides much higher ablation rate of 30-100 nm/pulse, giving an opportunity of fast high-quality processing of materials. This regime is well suited for drilling of through holes and fast cutting of materials. However, it was found that fast ablation regime imposes additional requirements on the quality of delivery and focusing of the laser beam because of the presence of parasitic ablation around the main spot on the tail of the radiation intensity distribution. As industrial machining examples, we demonstrate heat-affected-zone free drilling of through holes in a 50 µm thick stainless steel foil and and cutting of a 50 µm thick Si wafer with a net cutting speed of 8 µm/sec.

Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses

Optics Letters, 2001

By moving silica glass in a preprogrammed structure, we directly produced three-dimensional holes with femtosecond laser pulses in single step. When distilled water was introduced into a hole drilled from the rear surface of the glass, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. Straight holes of 4-mm diameter were more than 200 mm deep. Three-dimensional channels can be micromachined inside transparent materials by use of this method, as we have demonstrated by drilling a square-wave-shaped hole inside silica glass.

A detailed study through the focal region of near-threshold single-shot femtosecond laser ablation nano-holes in borosilicate glass

Optics Communications, 2011

A detailed study of the morphology of nano-craters drilled in borosilicate glass by single shot femtosecond laser ablation near the ablation threshold has been performed by scanning electron microscopy, atomic force microscopy and scanning electron microscopy imaging after focused ion beam sectioning. The influence of the numerical aperture (NA = 0.4 and 0.8), the pulse energy (16 nJ b E p b 600 nJ) and the position of the specimen surface into the focal region were systematically investigated, leading to nanometric or micrometric scales in every spatial dimension. The nanocrater's size is not restricted by the diffraction limit but determined by the laser pulse stability and the material properties. If the beam is focused inside the glass, two craters are drilled, shaping very distinct morphologies. Their dimensions have been studied in details and different relationships have been proposed for the evolutions of the depths and of the various diameters of these craters as functions of the pulse energy, the numerical aperture and the position of specimen surface in the beam-material interaction region. It is suggested that the long, thin conical profile with very high aspect ratio of the secondary craters is due to a spontaneous reshaping of the beam which transforms the incoming Gaussian pulse into a Gaussian-Bessel pulse. As proposed in the developed model the geometry of the second craters seems to be connected with the one of the main craters.

Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining

2014

Femtosecond laser micromachining has emerged in recent years as a new technique for micro/nano structure fabrication because of its applicability to virtually all kinds of materials in an easy one-step process that is scalable. In the past, much research on femtosecond laser micromachining was carried out to understand the complex ablation mechanism, whereas recent works are mostly concerned with the fabrication of surface structures because of their numerous possible applications. The state-of-the-art knowledge on the fabrication of these structures on metals with direct femtosecond laser micromachining is reviewed in this article. The effect of various parameters, such as fluence, number of pulses, laser beam polarization, wavelength, incident angle, scan velocity, number of scans, and environment, on the formation of different structures is discussed in detail wherever possible. Furthermore, a guideline for surface structures optimization is provided. The authors’ experimental work on laser-inscribed regular pattern fabrication is presented to give a complete picture of micromachining processes. Finally, possible applications of laser-machined surface structures in different fields are briefly reviewed.

Femtosecond laser ablation of carbon reinforced polymers

Applied Surface Science, 2006

Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials. #