Transversally periodic solitary gravity-capillary waves (original) (raw)

Abstract

When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (25)

  1. Makin VK, Kudryavtsev VN. 1999 Coupled sea surface-atmosphere model. 1. Wind over waves coupling. J. Geophys. Res. C 104, 7613-7623.
  2. Coantic M. 1986 A model of gas transfer across air-water interfaces with capillary waves. J. Geophys. Res. C 91, 3925-3943.
  3. Zhang X. 1995. Capillary-gravity and capillary waves generated in a wind wave tank: observations and theory. J. Fluid Mech. 289, 51-82. (doi:10.1017/S0022112095001236)
  4. Longuet-Higgins MS. 1989 Capillary-gravity waves of solitary type on deep water. J. Fluid Mech. 200, 451-478. (doi:10.1017/S002211208900073X)
  5. Vanden-Broeck JM, Dias F. 1992 Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549-557. (doi:10.1017/S0022112092000193)
  6. Dias F, Menasce D, Vanden-Broeck JM. 1996 Numerical study of capillary-gravity solitary waves. Eur. J. Mech. B Fluids 15, 17-36. (doi:10.1029/JC091iC03p03925)
  7. Calvo DC, Yang TS, Akylas TR. 2002 Stability of steep gravity-capillary waves in deep water. J. Fluid Mech. 452, 123-143. (doi:10.1017/S002211200100670X)
  8. Milewski PA, Vanden-Broeck JM, Wang Z. 2010 Dynamics of steep two-dimensional gravity- capillary solitary waves. J. Fluid Mech. 664, 466-477. (doi:10.1017/S0022112010004714)
  9. Pȃrȃu EI, Vanden-Broeck JM, Cooker MJ. 2005 Nonlinear three-dimensional gravity-capillary solitary wave. J. Fluid Mech. 536, 99-105. (doi:10.1017/S0022112005005136)
  10. Kim B, Akylas TR. 2005 On gravity-capillary lumps. J. Fluid Mech. 540, 337-351. (doi:10.1017/ S0022112005005823)
  11. Milewski PA. 2005 Three-dimensional localized gravity-capillary waves. Commun. Math. Sci. 3, 89-99. (doi:10.4310/CMS.2005.v3.n1.a6)
  12. Akers B, Milewski PA. 2009 A model equation for wavepacket solitary waves arising from capillary-gravity flows. Stud. Appl. Math. 122, 249-274. (doi:10.1111/j.1467-9590.2009. 00432.x)
  13. Wang Z, Milewski PA. 2012 Dynamics of gravity-capillary solitary waves in deep water. J. Fluid Mech. 708, 480-501. (doi:10.1017/jfm.2012.320)
  14. Kim B, Akylas TR. 2007 Transverse instability of gravity-capillary solitary waves. J. Eng. Math. 58, 167-175. (doi:10.1007/s10665-006-9122-6)
  15. Groves MD, Haragus M, Sun SM. 2002 A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves. Phil. Trans. R. Soc. Lond. A 360, 2189-2243. (doi:10.1098/ rsta.2002.1066)
  16. Sulem C, Sulem PL. 1999 The nonlinear Schrödinger equation: self-focussing and wave collapse, vol. 139. Applied Mathematical Science. Berlin, Germany: Springer.
  17. Alfimov GL, Eleonsky VM, Kulagin NE, Lerman LM, Silin VP. 1990 On existence of non-trivial solutions for the equation u -u + u 3 = 0. Physica D 44, 168-177. (doi:10.1016/0167-2789(90) 90053-R)
  18. Chiao RY, Garmire E, Townes C. 1964 Self-trapping of optical beams. Phys. Rev. Lett. 13, 479- 482. (doi:10.1103/PhysRevLett.13.479)
  19. Ablowitz MJ, Clarkson PA. 1991 Solitons, nonlinear evolution equations and inverse scattering, vol. 149. London Mathematical Society Lecture Note Series. Cambridge, UK: Cambridge University Press.
  20. Rypdal K, Rasmussen JJ. 1989 Stability of solitary structures in the nonlinear Schrödinger equations. Physica Scripta 40, 192-201. (doi:10.1088/0031-8949/40/2/008)
  21. Zakharov VE. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190-194. (doi:10.1007/BF00913182)
  22. Craig W, Sulem C. 1993 Numerical simulation of gravity waves. J. Comput. Phys. 108, 73-83. (doi:10.1006/jcph.1993.1164)
  23. Nicholls DP. 1998 Traveling water waves: spectral continuation methods with parallel implementation. J. Comput. Phys. 143, 224-240. (doi:10.1006/jcph.1998.5957)
  24. Milewski PA, Tabak EG. 1999 A pseudospectral procedure for the solution of nonlinear wave equations with examples from free-surface flows. SIAM J. Sci. Comput. 21, 1102-1114. (doi:10.1137/S1064827597321532)
  25. Saffman PG. 1985 The superharmonic instability of finite amplitude water waves. J. Fluid Mech. 159, 169-174. (doi:10.1017/S0022112085003159)