Probing chemical heterogeneity of Li-ion batteries by in operando high energy X-ray diffraction radiography (original) (raw)

Homogeneity of lithium distribution in cylinder-type Li-ion batteries

Scientific Reports, 2015

Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm 3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode.

Application of Operando X-ray Diffractometry in Various Aspects of the Investigations of Lithium/Sodium-Ion Batteries

Energies

The main challenges facing rechargeable batteries today are: (1) increasing the electrode capacity; (2) prolonging the cycle life; (3) enhancing the rate performance and (4) insuring their safety. Significant efforts have been devoted to improve the present electrode materials as well as to develop and design new high performance electrodes. All of the efforts are based on the understanding of the materials, their working mechanisms, the impact of the structure and reaction mechanism on electrochemical performance. Various operando/in-situ methods are applied in studying rechargeable batteries to gain a better understanding of the crystal structure of the electrode materials and their behaviors during charge-discharge under various conditions. In the present review, we focus on applying operando X-ray techniques to investigate electrode materials, including the working mechanisms of different structured materials, the effect of size, cycling rate and temperature on the reaction mech...

Absolute Local Quantification of Li as Function of State-of-Charge in All-Solid-State Li Batteries via 2D MeV Ion-Beam Analysis

Batteries

Direct observation of the lithiation and de-lithiation in lithium batteries on the component and microstructural scale is still difficult. This work presents recent advances in MeV ion-beam analysis, enabling quantitative contact-free analysis of the spatially-resolved lithium content and state-of-charge (SoC) in all-solid-state lithium batteries via 3 MeV proton-based characteristic x-ray and gamma-ray emission analysis. The analysis is demonstrated on cross-sections of ceramic and polymer all-solid-state cells with LLZO and MEEP/LIBOB solid electrolytes. Different SoC are measured ex-situ and one polymer-based operando cell is charged at 333 K during analysis. The data unambiguously show the migration of lithium upon charging. Quantitative lithium concentrations are obtained by taking the physical and material aspects of the mixed cathodes into account. This quantitative lithium determination as a function of SoC gives insight into irreversible degradation phenomena of all-solid-s...

Meso-scale characterization of lithium distribution in lithium-ion batteries using ion beam analysis techniques

Journal of Power Sources, 2015

The performance of a Li-ion battery (LIB) is mainly governed by the diffusion capabilities of lithium in the electrodes. Thus, for LIB improvement it is essential to characterize the lithium distribution. Most of the traditionally used techniques for lithium characterization give information about the local scale or in the macroscopic scale. However, the lithium behavior at the local scale is not mirrored at the macroscopic scale. Therefore, the lithium characterization in the mesoscopic scale would be of help to understand and to connect the mechanisms taking place in the two spatial scales. In this paper, we show a general description of the capabilities and limitations of ion beam analysis techniques to study the distributions of lithium and other elements present in the electrodes in the mesoscopic scale. The potential of the 7 Li(p,α 0) 4 He nuclear reaction to non-invasively examine the lithium distribution as a function of depth is illustrated. The lithium spatial distribution is characterized using particle induced γ-ray (μ-PIGE) spectroscopy. This technique allows estimating the density of the active particles in the electrode effectively contributing to the Li intercalation and/or de-intercalation.The advantages of the use of ion beam analysis techniques in comparison to more traditional techniques for electrode characterization are discussed.

In situ X-ray absorption spectroscopy—A probe of cathode materials for Li-ion cells

Fluid Phase Equilibria, 2006

In situ X-ray absorption spectroscopy is a powerful emerging technique that has the capability to observe the changes in ongoing electrochemical reactions. It is already well established in materials science, and it is becoming a significant tool for the electrochemical community. As with all X-ray absorption spectroscopies, extended X-ray absorption fine structure (EXAFS) has the advantage of being element specific. Interpretation of the spectra at different states of charge can provide very useful quantitative and qualitative information about the valence change of the constituent elements in the cathode material during the ongoing electrochemical reaction, the degree of distortion or changes in structure from the initial state of charge to the final state of charge and provide valuable information about the extent of degradation of the cathode material during continuous cycling. It can also provide valuable insight about how the nature of the electrochemical reactions changes when one of the transition metal constituents is removed or increased in content in the cathode material. It is often important to adjust the composition of the cathode material in order to achieve high specific capacity and long-term stability in Li-ion cells. This article details the development of the in situ XAS techniques to study electrochemical reactions using various X-ray absorption spectroscopies which are now possible with the advent of third generation synchrotron radiation sources and improved end stations. The strength of in situ EXAFS techniques is illustrated using examples of various interesting transition metal oxides. In this way, we aim to encourage chemists, chemical engineers and materials scientists to consider in situ X-ray absorption spectroscopy as an effective tool for developing an understanding the electronic structure of materials and the changes that it undergoes during electrochemical reactions. (A. Deb).

In-situ X-ray diffraction studies of lithium–sulfur batteries

Journal of Power Sources, 2013

h i g h l i g h t s < Structural changes of lithiumesulfur batteries were studied by means of in-situ XRD. < Dilithium sulfide was detected the first time at a depth of discharge of 60%. < Sulfur recrystallizes with an orientated structure and lower crystallite size. < Sulfur and dilithium sulfide were semi-quantitatively determined.