Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis (original) (raw)

Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis

Analytical and bioanalytical chemistry, 2015

In this article, a dataset from a collaborative non-target screening trial organised by the NORMAN Association is used to review the state-of-the-art and discuss future perspectives of non-target screening using high-resolution mass spectrometry in water analysis. A total of 18 institutes from 12 European countries analysed an extract of the same water sample collected from the River Danube with either one or both of liquid and gas chromatography coupled with mass spectrometry detection. This article focuses mainly on the use of high resolution screening techniques with target, suspect, and non-target workflows to identify substances in environmental samples. Specific examples are given to emphasise major challenges including isobaric and co-eluting substances, dependence on target and suspect lists, formula assignment, the use of retention information, and the confidence of identification. Approaches and methods applicable to unit resolution data are also discussed. Although most s...

An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples

TrAC Trends in Analytical Chemistry, 2020

The application of non-target analysis (NTA), a comprehensive approach to characterize unknown chemicals, including chemicals of emerging concern has seen a steady increase recently. Given the relative novelty of this type of analysis, robust quality assurance and quality control (QA/QC) measures are imperative to ensure quality and consistency of results obtained using different workflows. Due to fundamental differences to established targeted workflows, new or expanded approaches are necessary; for example to minimize the risk of losing potential substances of interest (i.e. false negatives, Type II error). We present an overview of QA/QC techniques for NTA workflows published to date, specifically focusing on the analysis of environmental samples using liquid chromatography coupled to HRMS. From a QA/QC perspective, we discuss methods used for each step of analysis: sample preparation, chromatography, mass spectrometry, and data processing. We then finish with a series of recommendations to improve the quality assurance of NTA workflows.

High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources

Environmental Sciences Europe

Currently, chemical monitoring based on priority substances fails to consider the majority of known environmental micropollutants not to mention the unexpected and unknown chemicals that may contribute to the toxic risk of complex mixtures present in the environment. Complementing component- and effect-based monitoring with wide-scope target, suspect, and non-target screening (NTS) based on high-resolution mass spectrometry (HRMS) data is recommended to support environmental impact and risk assessment. This will allow for detection of newly emerging compounds and transformation products, retrospective monitoring efforts, and the identification of possible drivers of toxicity by correlation with effects or modelling of expected effects for future and abatement scenarios. HRMS is becoming increasingly available in many laboratories. Thus, the time is right to establish and harmonize screening methods, train staff, and record HRMS data for samples from regular monitoring events and sur...

ERNCIP thematic area Chemical & Biological Risks in the Water Sector Deliverable 1-Task 6 State-ofthe-art of screening methods for the rapid identification of chemicals in drinking water

2013

The contamination of drinking water is potentially harmful and poses a risk to public health. If any observation suggests a potential contamination of drinking water, such as consumer complaints about the alteration of the water’s organoleptic properties, the appearance of health problems or an alarm triggered by sensors, a rapid identification of the hazard causing the problem is necessary. With regards to chemical contamination, EU Member States have several strategies to deal with the presence of unknown chemicals in water: there are screening methods as well as systematic approaches used for the analysis and identification of different groups of chemicals. This report provides a brief overview of the existing methods for the non-targeted screening of organic compounds in water samples by means of mass spectrometry. This review is thus based on the studies and explorations that can be performed by different mass spectrometry approaches. In addition, the most relevant European ins...

High resolution mass spectrometry-based non-target screening can support regulatory environmental monitoring and chemicals management

Environmental Sciences Europe, 2019

Non-target screening (NTS) including suspect screening with high resolution mass spectrometry has already shown its feasibility in detecting and identifying emerging contaminants, which subsequently triggered exposure mitigating measures. NTS has a large potential for tasks such as effective evaluation of regulations for safe marketing of substances and products, prioritization of substances for monitoring programmes and assessment of environmental quality. To achieve this, a further development of NTS methodology is required, including: (i) harmonized protocols and quality requirements, (ii) infrastructures for efficient data management, data evaluation and data sharing and (iii) sufficient resources and appropriately trained personnel in the research and regulatory communities in Europe. Recommendations for achieving these three requirements are outlined in the following discussion paper. In particular, in order to facilitate compound identification it is recommended that the relevant information for interpretation of mass spectra, as well as about the compounds usage and production tonnages, should be made accessible to the scientific community (via open-access databases). For many purposes, NTS should be implemented in combination with effectbased methods to focus on toxic chemicals.

Successful adaption of a forensic toxicological screening workflow employing nontargeted liquid chromatography-tandem mass spectrometry to water analysis

Electrophoresis, 2016

Forensic toxicology and environmental water analysis share the common interest and responsibility in ensuring comprehensive and reliable confirmation of drugs and pharmaceutical compounds in samples analyzed. Dealing with similar analytes, detection and identification techniques should be exchangeable between scientific disciplines. Herein, we demonstrate the successful adaption of a forensic toxicological screening workflow employing nontargeted LC/MS/MS under data-dependent acquisition control and subsequent database search to water analysis. The main modification involved processing of an increased sample volume with SPE (500 mL vs. 1-10 mL) to reach LODs in the low ng/L range. Tandem mass spectra acquired with a qTOF instrument were submitted to database search. The targeted data mining strategy was found to be sensitive and specific; automated search produced hardly any false results. To demonstrate the applicability of the adapted workflow to complex samples, 14 wastewater effluent samples collected on seven consecutive days at the local wastewater-treatment plant were analyzed. Of the 88,970 fragment ion mass spectra produced, 8.8% of spectra were successfully assigned to one of the 1040 reference compounds included in the database, and this enabled the identification of 51 compounds representing important illegal drugs, members of various pharmaceutical compound classes, and metabolites thereof.

Direct Mass Spectrometry with Online Headspace Sample Pretreatment for Continuous Water Quality Monitoring

Water, 2020

This study investigates the use of selected ion flow tube mass spectrometry with an automated headspace pretreatment system for the continuous surveillance of water quality at wastewater treatment plants (WWTPs) and rivers. The reaction rates of the target compounds introduced using the headspace method were similar to those of the mass scan library, with a margin of error of <10%. Novel quantitative formulae were derived for the water samples of the target compounds, and the linearity of the calibration curves for both the purified and effluent matrix (0.1–2.0 mg/L) showed a coefficient of determination of 0.98–0.99 for most compounds. The detection limit for 74% of the target substances was 0.02–0.10 mg/L, and the average recoveries were 111.6% and 104.7% for the low- and high-concentration spiked samples, respectively, which are comparable to those of the headspace gas chromatography-mass spectrometry system. However, the variability in individual concentrations was still larg...

The NORMAN Suspect List Exchange (NORMAN-SLE): Facilitating European and Worldwide Collaboration on Suspect Screening in High Resolution Mass Spectrometry

Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the Europe...

Use of Passive and Grab Sampling and High-Resolution Mass Spectrometry for Non-Targeted Analysis of Emerging Contaminants and Their Semi-Quantification in Water

Molecules

Different groups of organic micropollutants including pharmaceuticals and pesticides have emerged in the environment in the last years, resulting in a rise in environmental and human health risks. In order to face up and evaluate these risks, there is an increasing need to assess their occurrence in the environment. Therefore, many studies in the past couple of decades were focused on the improvements in organic micropollutants’ extraction efficiency from the different environmental matrices, as well as their mass spectrometry detection parameters and acquisition modes. This paper presents different sampling methodologies and high-resolution mass spectrometry-based non-target screening workflows for the identification of pharmaceuticals, pesticides, and their transformation products in different kinds of water (domestic wastewater and river water). Identification confidence was increased including retention time prediction in the workflow. The applied methodology, using a passive sa...