Photoluminescence and thermoluminescence studies of Mg2SiO4:Eu3+ nano phosphor (original) (raw)

Nanoparticles of Eu 3+ doped Mg 2 SiO 4 are prepared using low temperature solution combustion technique with metal nitrate as precursor and urea as fuel. The synthesized samples are calcined at 800 • C for 3 h. The Powder X-ray diffraction (PXRD) patterns of the sample reveled orthorhombic structure with ␣-phase. The crystallite size using Scherer's formula is found to be in the range 50-60 nm. The effect of Eu 3+ on the luminescence characteristics of Mg 2 SiO 4 is studied and the results are presented here. These phosphors exhibit bright red color upon excitation by 256 nm light and showed the characteristic emission of the Eu 3+ ions. The electronic transition corresponding to 5 D 0 → 7 F 2 of Eu 3+ ions (612 nm) is stronger than the magnetic dipole transition corresponding to 5 D 0 → 7 F 1 of Eu 3+ ions (590 nm). Thermoluminescence (TL) characteristics of ␥-rayed Mg 2 SiO 4 :Eu 3+ phosphors are studied. Two prominent and well-resolved TL glows with peaks at 202 • C and 345 • C besides a shoulder with peak at ∼240 • C are observed. The trapping parameters-activation energy (E), order of kinetics (b) and frequency factor (s) are calculated using glow curve shape method and the results obtained are discussed.