Amphiphilic Dendrimers as Building Blocks in Supramolecular Assemblies (original) (raw)
1998, Journal of the American Chemical Society
The self-assembly of amphiphilic dendrimers based on poly(propylene imine) dendrimers of five different generations with up to 64 end groups modified with long hydrophobic chains has been studied. At the air-water interface stable monolayers form in which the dendritic surfactants presumably adopt a cylindrical shape; all the chains are aligned perpendicular to the water surface, and the dendritic poly(propylene imine) core faces the aqueous phase. Electron microscopy and dynamic light-scattering measurements performed on aqueous solutions of the amphiphiles at pH) 1 showed the formation of small spherical aggregates with diameters varying between 20 and 200 nm. X-ray diffraction of cast films of these aggregates revealed bilayer thicknesses of 48-54 Å. A phase transition was detected by measuring fluorescence anisotropy. The theoretical volumes of the dendritic amphiphiles were in good agreement with those calculated from the monolayer experiments and X-ray diffraction data. Hence, the amphiphilic dendrimers within the aggregates in solution have the same highly asymmetric conformation as that proposed at the air-water interface. Calculations showed that the shape of the dendritic poly(propylene imine) core in the aggregates is distorted and that the axial ratio (r b :r a) ranges from 1:2.5 for the first generation to approximately 1:8 for the three highest generation of dendrimer. This behavior illustrates the high flexibility of the poly(propylene imine) dendrimers.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.