Validation of 4D Monte Carlo dose calculations using a programmable deformable lung phantom (original) (raw)
Related papers
Radiation oncology (London, England), 2010
Thoracic cancer treatment presents dosimetric difficulties due to respiratory motion and lung inhomogeneity. Monte Carlo and deformable image registration techniques have been proposed to be used in four-dimensional (4D) dose calculations to overcome the difficulties. This study validates the 4D Monte Carlo dosimetry with measurement, compares 4D dosimetry of different tumor sizes and tumor motion ranges, and demonstrates differences of dose-volume histograms (DVH) with the number of respiratory phases that are included in 4D dosimetry. BEAMnrc was used in dose calculations while an optical flow algorithm was used in deformable image registration and dose mapping. Calculated and measured doses of a moving phantom agreed within 3% at the center of the moving gross tumor volumes (GTV). 4D CT image sets of lung cancer cases were used in the analysis of 4D dosimetry. For a small tumor (12.5 cm3) with motion range of 1.5 cm, reduced tumor volume coverage was observed in the 4D dose with ...
Experimental verification of 4D Monte Carlo simulations of dose delivery to a moving anatomy
Medical physics, 2017
To evaluate a novel 4D Monte Carlo simulation tool by comparing calculations to physical measurements using a respiratory motion phantom. We used a dynamic Quasar phantom in both stationary and breathing states (sinusoidal motion of amplitude of 1.8 cm and period of 3.3 s) for dose measurements on an Elekta Agility linear accelerator. Gafchromic EBT3 film and the RADPOS 4D dosimetry system were placed inside the lung insert of the phantom to measure dose profiles and point-dose values at the center of the spherical tumor inside the insert. Both a static 4 × 4 cm(2) field and a VMAT plan were delivered. Static and 4D Monte Carlo simulations of the treatment deliveries were performed using DOSXYZnrc and a modified version of the defDOSXYZnrc user code that allows modeling of the continuous motion of both machine and patient. DICOM treatment plan files and linac delivery log files were used to generate corresponding input files. The phantom motion recorded by RADPOS during beam deliver...
Medical Physics, 2011
Purpose: A novel 4D in vivo dosimetry system ͑RADPOS͒, in conjunction with a deformable lung phantom, has been evaluated as a potential quality assurance tool for 4D radiotherapy. Methods: RADPOS detectors, which consist of a MOSFET dosimeter combined with an electromagnetic positioning probe, were placed inside the deformable lung phantom. One detector was positioned directly inside a tumor embedded in the lung phantom and another was positioned inside the lung portion of the phantom, outside the tumor. CT scans were taken with the phantom at three breathing phases, and for each phase, the detector position inside the phantom was read with the RADPOS software and compared to the position as determined from the CT data. These values were also compared to RADPOS measurements taken with the phantom on the couch of a Varian Clinac 6EX linac. The deformable phantom and the RADPOS system were also used in two radiation delivery scenarios: ͑1͒ A simulation of a free-breathing delivery and ͑2͒ a simulation of an adaptive treatment. Results: Compared to CT imaging, the RADPOS positional accuracy was found to be better than 2.5 mm. The radial displacement measurements taken in the CT and linac rooms agreed to within an average of ͑0.7Ϯ 0.3͒ mm. Hence, the system can provide relative displacement measurements in the treatment room, consistent with measurements made in the CT room. For the free-breathing delivery, the total dose reported by RADPOS agreed to within 4% and 5% of the treatment planning doses in the tumor and the lung portion of the phantom, respectively. The RADPOS-measured dose values for the adaptive delivery were within 1.5% of the treatment plan values, which was well within the estimated experimental uncertainties. Conclusions: This work has shown that the deformable lung phantom-RADPOS system can be an efficient quality assurance tool for 4D radiation therapy.
Medical Physics, 2008
The purpose of this study was to investigate if interfraction and intrafraction motion in free-breathing and gated lung IMRT can lead to systematic dose differences between 3DCT and 4DCT. Dosimetric effects were studied considering the breathing pattern of three patients monitored during the course of their treatment and an in-house developed 4D Monte Carlo framework. Imaging data were taken in free-breathing and in cine mode for both 3D and 4D acquisition. Treatment planning for IMRT delivery was done based on the free-breathing data with the CORVUS (North American Scientific, Chatsworth, CA) planning system. The dose distributions as a function of phase in the breathing cycle were combined using deformable image registration. The study focused on (a) assessing the accuracy of the CORVUS pencil beam algorithm with Monte Carlo dose calculation in the lung, (b) evaluating the dosimetric effect of motion on the individual breathing phases of the respiratory cycle, and (c) assessing intrafraction and interfraction motion effects during free-breathing or gated radiotherapy. The comparison between (a) the planning system and the Monte Carlo system shows that the pencil beam algorithm underestimates the dose in low-density regions, such as lung tissue, and overestimates the dose in high-density regions, such as bone, by 5% or more of the prescribed dose (corresponding to approximately 3-5 Gy for the cases considered). For the patients studied this could have a significant impact on the dose volume histograms for the target structures depending on the margin added to the clinical target volume (CTV) to produce either the planning target (PTV) or internal target volume (ITV). The dose differences between (b) phases in the breathing cycle and the free-breathing case were shown to be negligible for all phases except for the inhale phase, where an underdosage of the tumor by as much as 9.3 Gy relative to the free-breathing was observed. The large difference was due to breathing-induced motion/deformation affecting the soft/lung tissue density and motion of the bone structures (such as the rib cage) in and out of the beam. Intrafraction and interfraction dosimetric differences between (c) free-breathing and gated delivery were found to be small. However, more significant dosimetric differences, of the order of 3%-5%, were observed between the dose calculations based on static CT (3DCT) and the ones based on time-resolved CT (4DCT). These differences are a consequence of the larger contribution of the inhale phase in the 3DCT data than in the 4DCT.
Physics in medicine and biology, 2015
Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spin...
Journal of Cancer Therapy, 2014
Purpose: To develop and test an integrated simulation system based on the digital Extended Cardio Torso (XCAT) phantom for 4-dimensional (4D) radiation therapy of lung cancer. Methods: A computer program was developed to facilitate the characterization and implementation of the XCAT phantom for 4D radiation therapy applications. To verify that patient-specific motion trajectories are reproducible with the XCAT phantom, motion trajectories of the diaphragm and chest were extracted from previously acquired MRI scans of five subjects and were imported into the XCAT phantom. The input versus the measured trajectories was compared. Simulation methods of 4D-CT and 4D-cone-beam CT (CBCT) based on the XCAT phantom were developed and tested for regular and irregular respiratory patterns. Simulation of 4D dose delivery was illustrated in a simulated lung stereotactic-body radiation therapy (SBRT) case based on the XCAT phantom. Dosimetric comparison was performed between the planned dose and simulated delivered dose. Result: The overall mean (±standard deviation) difference in motion amplitude between the input and measured trajectories was 1.19 (±0.79) mm for the XCAT phantoms with voxel size of 2 mm. 4D-CT and 4D-CBCT images simulated based on the XCAT phantom were validated using regular respiratory patterns and tested for irregular respiratory patterns. Comparison between simulated 4D dose delivery and planned dose for the lung SBRT case showed comparable results in all dosimetric matrices: the relative differences were 0.3%, 4.0%, 0%, and 2.8%, respectively, for max cord dose, max esophagus dose, mean heart dose, and V20Gy of the lungs. 97.5% of planning target volume (PTV) received prescription dose in the simulated 4D delivery, as compared to 95% of PTV received prescription dose in the plan. Conclusion: We developed an integrated simulation system based on the XCAT digital phantom and illustrated its utility in 4D radiation therapy of * Corresponding author. J. Cai et al. 750 lung cancer. This simulation system is potentially a useful tool for quality control and development of imaging and treatment techniques for 4D radiation therapy of lung cancer.
Radiation oncology (London, England), 2018
Stereotactic Body Radiotherapy (SBRT) is an ablative dose delivery technique which requires the highest levels of precision and accuracy. Modeling dose to a lung treatment volume has remained a complex and challenging endeavor due to target motion and the low density of the surrounding media. When coupled together, these factors give rise to pulmonary induced tissue heterogeneities which can lead to inaccuracies in dose computation. This investigation aims to determine which combination of imaging techniques and computational algorithms best compensates for time dependent lung target displacements. A Quasar phantom was employed to simulate respiratory motion for target ranges up to 3 cm. 4DCT imaging was used to generate Average Intensity Projection (AIP), Free Breathing (FB), and Maximum Intensity Projection (MIP) image sets. In addition, we introduce and compare a fourth dataset for dose computation based on a novel phase weighted density (PWD) technique. All plans were created us...
Real-Time Simulation of 4D Lung Tumor Radiotherapy Using a Breathing Model
Lecture Notes in Computer Science
In this paper, we present a real-time simulation and visualization framework that models a deformable surface lung model with tumor, simulates the tumor motion and predicts the amount of radiation doses that would be deposited in the moving lung tumor during the actual delivery of radiation. The model takes as input a subject-specific 4D Computed Tomography (4D CT) of lungs and computes a deformable lung surface model by estimating the deformation properties of the surface model using an inverse dynamics approach. Once computed, the deformable model is used to simulate and visualize lung tumor motion that would occur during radiation therapy accounting for variations in the breathing pattern. A radiation treatment plan for the lung tumor is developed using one of the 4D CT phases. During the simulation of radiation delivery, the dose on the lung tumor is computed for each beam independently.
Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation
Medical Physics, 2012
Purpose: Conventional (i.e., respiratory-correlated) 4DCT exploits the repetitive nature of breathing to provide an estimate of motion; however, it has limitations due to binning artifacts and irregular breathing in actual patient breathing patterns. The aim of this work was to evaluate the accuracy and image quality of a dynamic volume, CT approach (4D vol ) using a 320-slice CT scanner to minimize these limitations, wherein entire image volumes are acquired dynamically without couch movement. This will be compared to the conventional respiratory-correlated 4DCT approach (RCCT). Methods: 4D vol CT was performed and characterized on an in-house, programmable respiratory motion phantom containing multiple geometric and morphological "tumor" objects over a range of regular and irregular patient breathing traces obtained from 3D fluoroscopy and compared to RCCT. The accuracy of volumetric capture and breathing displacement were evaluated and compared with the ground truth values and with the results reported using RCCT. A motion model was investigated to validate the number of motion samples needed to obtain accurate motion probability density functions (PDF). The impact of 4D image quality on this accuracy was then investigated. Dose measurements using volumetric and conventional scan techniques were also performed and compared. Results: Both conventional and dynamic volume 4DCT methods were capable of estimating the programmed displacement of sinusoidal motion, but patient breathing is known to not be regular, and obvious differences were seen for realistic, irregular motion. The mean RCCT amplitude error averaged at 4 mm (max. 7.8 mm) whereas the 4D vol CT error stayed below 0.5 mm. Similarly, the average absolute volume error was lower with 4D vol CT. Under irregular breathing, the 4D vol CT method provides a close description of the motion PDF (cross-correlation 0.99) and is able to track each object, whereas the RCCT method results in a significantly different PDF from the ground truth, especially for smaller tumors (cross-correlation ranging between 0.04 and 0.69). For the protocols studied, the dose measurements were higher in the 4D vol CT method (40%), but it was shown that significant mAs reductions can be achieved by a factor of 4-5 while maintaining image quality and accuracy. Conclusions: 4D vol CT using a scanner with a large cone-angle is a promising alternative for improving the accuracy with which respiration-induced motion can be characterized, particularly for patients with irregular breathing motion. This approach also generates 4DCT image data with a reduced total scan time compared to a RCCT scan, without the need for image binning or external respiration signals within the 16 cm scan length. Scan dose can be made comparable to RCCT by optimization of the scan parameters. In addition, it provides the possibility of measuring breathing motion for more than one breathing cycle to assess stability and obtain a more accurate motion PDF, which is currently not feasible with the conventional RCCT approach. V C 2012 American Association of Physicists in Medicine. [http://dx.
Physics in Medicine and Biology, 2007
The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm −3 ) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle 3 (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour 0031-9155/07/144265+17$30.00