Contribution of zooplankton as a biological element in the assessment of reservoir water quality (original) (raw)
Abstract
Contribution of zooplankton as a biological element in the assessment of reservoir water quality European water policies aim to achieve a good ecological status in all water bodies. The Water Framework Directive (WFD) defined a group of biological elements to assess water quality. In reservoirs and lakes, phytoplankton is the only biological element used for water quality evaluation. However, zooplankton is an important link in the trophic web, since it is able to control the phytoplankton community and was already described as a good bioindicator, with high sensitivity to different environmental stresses. The main goal of this work is to demonstrate the ability of zooplankton communities to be used in the evaluation of water quality in reservoirs. A group of four reservoirs in the north of Portugal (Paradela, Alto Cávado, Alto Rabagão, and Venda Nova) were sampled every three months, during one year, to assess the water quality. Physical and chemical parameters, as well as phytoplankton communities, were studied according to the metrics proposed by the WFD for this typology of water bodies. Additionally, zooplankton communities were also sampled in each reservoir, to understand if their seasonal dynamics are influenced by alterations of the water quality in the reservoirs. Results show that the reservoirs present a good ecological potential, according to WFD reference values for physical and chemical parameters and phytoplankton communities, with occasional drops to moderate ecological potential due to variations in the dissolved O 2 and total phosphorus values. The results observed in the dynamics of zooplankton communities show that this biological element is sensitive to changes in the reservoirs and provides a more detailed image of the state of the ecosystem. Zooplankton communities responded to alterations in the water level in the reservoir, to shifts in the trophic status and in the water quality, both at the taxonomic level and on a functional perspective. Therefore, the metrics proposed by WFD to evaluate water quality in reservoirs seem to be insufficient to understand all the alterations that occur in these aquatic ecosystems.
Figures (8)
Figure 1. Location of each study site: VN - Venda Nova reservoir; AR1 and AR2 - two sampling sites at Alto Rabagaio reservoir; AC - Alto Cavado reservoir; and P - Paradela reservoir. Ubicacion de cada sitio de estudio: VN - Embalse de Venda Nova; ARI y AR2: dos sitios de muestreo en el embalse Alto Rabagao; AC - Embalse Alto Cavado; y P - Embalse de Paradela. between phytoplanktonic producers and planktiv- orous fish (Abrantes et al., 2006; Jensen et al., 2013). They are also responsible for the water body capacity of self-purification since they feed on suspended particles (An et al., 2012; Li et al., 2014). However, zooplankton community com- position and abundance are highly dependent on various factors, including competition and preda- ion (Kehayias et al., 2008), and pH changes or food availability (Allen et al., 1999). Indeed, several authors have demonstrated that zooplank- on community is strongly influenced by both bottom-up and top-down processes, being strong- y dependent on the nutrient availability and abundance of phytoplankton, and also on preda- ion from fish and macroinvertebrates (Abrantes et al., 2006). The body sizes of the organisms, as well as the species composition, are a reflex of the biological pressures on the zooplanktonic com- munity (Brooks & Dodson, 1965; An et al., 2012) and also provide an image of the functional prop- erties of waterbodies and their fluctuation (Castro et al., 2005; Jensen et al., 2013; Azevédo et al., 2015). Functional traits have been discussed
Data Analysis quantification of photosynthetic parameters (chlorophyll a) was conducted according to Lorenzen (1967) method. Table 1. Functional groups of zooplankton community classification according to several authors: Gliwicz, 1977; Rieper, 1978; Geller & Miiller, 1981; DeMott & Kerfoot, 1982; Porter et a/., 1983; Carman & Thistle, 1985; DeMott, 1985; Hessen, 1985; Bern, 1990; Adrian & Frost, 1993; Bern, 1994; Seifried & Diirbaum, 2000; Boxshall & Halsey, 2004 Haberman & Haldna, 2014. Grupos funcionales de clasificacién de la comunidad de zooplancton segun varios autores: Gliwicz, 1977; Rieper, 1978; Geller & Miiller, 1981; DeMott & Kerfoot, 1982; Porter et al., 1983; Carman & Thistle, 1985; DeMott, 1985; Hessen, 1985; Bern, 1990; Adrian & Frost, 1993; Bern, 1994; Seifried & Diirbaum, 2000; Boxshall & Halsey, 2004 Haberman & Haldna, 2014.
Table 2. Physical and chemical parameters measured in water samples for each site along the sampling period, with the limit values for good ecological potential (GEP) according to WFD for highly modified water bodies (reservoirs) and ecological water classifica- tion (INAG, 2009). BDL - below detected limit (0.10 mg/L), bold values stand for values out the stipulated range. Pardmetros fisicos y quimicos de soporte general medidos en muestras de agua para cada sitio a lo largo del periodo de muestreo, con los valores limite a buen potencial ecologico (GEP) segun WFD para cuerpos de agua altamente modificados (reservorios) y clasificacion ecologica del agua (INAG, 2009). BDL - por debajo del limite detectado (0.10 mg/L), los valores en negrita representan valores fuera del rango estipulado.
Table 3. Other relevant physical and chemical parameters measured in water samples for each site along the sampling period. Cond — Conductivity, TSS — Total Suspended Solids, BODS - biochemical oxygen demand after 5 days, Turb — turbidity, Temp — Tempera- ture, NO» - Nitrites, NH4* - Ammonium, and TSI — Trophic State Index (O — Oligotrophic, M — Mesotrophic, E — Eutrophic). Otros parametros fisicos y quimicos relevantes medidos en muestras de agua para cada sitio a lo largo del periodo de muestreo. Cond - Conductividad, TSS - Solidos Suspendidos Totales, DBOS5 - demanda bioquimica de oxigeno después de 5 dias, turbiedad - turbidez, temperatura - temperatura, NOx - nitritos, NH4* - amonio, e TSI - indice de estado tréfico (O - oligotrofico, M - Mesotréfico, E - Eutrofico).
Table 4. Normalized Ecological Quality Ratios (EQR) for the four phytoplankton composition metrics: Chlorophyll a concentration; % Biovolume of cyanobacteria; total phytoplankton biovolume; and the IGA (Index group algae), also known as the Catalan Index (Catalan et al., 2003) for each sampling site along the studied period and ecological classification according to these WFD metrics. Relaciones de calidad ecologica normalizada (EQR) a las cuatro métricas de composicion del fitoplancton: Concentracion de clorofi- la a; % Biovolumen de cianobacterias; biovolumen total de fitoplancton; y el IGA (grupo de indice de algas), también conocido como el Indice Catalén (Catalan et al., 2003) para cada sitio de muestreo a lo largo del periodo estudiado y la clasificacion ecol6gica segun esta métrica de la DMA.
available at http://www. limnetica.net/en/limneti- ca). According to the WFD guidelines, for North- ern Reservoirs of Portugal, an average EQR value for phytoplankton higher or equal to 0.6 means that the water body is classified as having good or higher ecological potential. The results obtained in this study show a slight variation in the EQR values among the studied reservoirs, with al scored values above the threshold and, therefore all classified as having good or higher ecologica potential. Paradela, was the one scoring the high- est EQR value for phytoplankton, 1.4 in Autumn, and a sampling site from ARI scored the lowes value (EQR = 0.6). ey Table 5. Species Richness, Shannon Diversity Index and Pielou Evenness results of zooplankton communities. Rigueza de especies, indice de diversidad de Shannon y resultados de uniformidad de Pielou de las comunidades de zooplancton. nium concentration was also very low for almost the samples (0.01 mg/L), and the highest concen- tration was 0.37 mg/L at VN in Winter. Phosphate was the only nutrient that showed more variation throughout the year and amongst sampling sites, with values between 0.02 mg/L (AR2 in Spring) and 7.41 mg/L (P in Autumn). TSI values, based on chlorophyll a concentration, were calculated and most of them fitted within the oligotrophic and mesotrophic state values (0 to < 40 and > 40 to < 50, respectively; Carlson, 1977). VN was the reservoir that displayed the highest variation in TSI values, in contrast to P, which was simultane- ously the reservoir with lower TSI values and less variation throughout the sampling period.
Figure 2. Dynamic of zooplankton community according to functional groups (see Table 4) in the 5 sampling sites (VN, AR1, AR2, AC, and P) for the 4 sampling periods (W-winter, Sp-Spring, Sm-Summer, and A-Autumn). Dindmica de la comunidad de zooplancton segun los grupos funcionales (ver tabla 4) en los 5 sitios de muestreo (VN, ARI, AR2, AC y P) para los 4 periodos de muestreo (W-invierno, Sp-primavera, Sm-verano, y A-otono). Almeida et al.
Figure 3. Venn diagram showing the partition of the total variation of the zooplankton community data across two sets of explanatory variables (physical and chemical data + phytoplank- ton metrics). Sum of all canonical eigenvalues for global model = 2.04. Diagrama de Venn que muestra la particion de la variacion total de los datos de la comunidad zooplanctonica en dos conjuntos de variables explicativas (datos fisicos y quimicos + métricas de fitoplancton). Suma de todos los valores propios canonicos para el modelo global = 2.04.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (59)
- ABRANTES, N., S. C. ANTUNES, M. PEREI- RA & F. GONÇALVES. 2006. Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologica, Almeida et al. 29: 54-64. DOI: 10.1016/j.actao.2005.07.006
- ADRIAN, R. & T. M. FROST. 1993. Omnivory in cyclopoid copepods: comparisons of algae and invertebrates as food for three, differently sized species. Journal of Plankton Research, 15: 643-658. DOI: 10.1093/plankt/15.6.643
- ALLEN, A. P., T. R. WHITTIER, P. R. KAUF- MANN, R. J. O'CONNOR, R. M. HUGHES, R. S. STEMBERGER, S. S. DIXIT, R. O. BRINKHURST, A. T. HERLIHY & S. G. PAULSEN. 1999. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Canadian Journal of Fisheries and Aquatic Sciences, 56: 2029-2040. DOI: 10. 1139/f99-139
- ALONSO, M. 1996. Crustacea, Branchiopoda, Vol 7. Editorial CSIC-CSIC Press. Madrid, Espanha.
- AMOROS, C. 1984. Crustacés cladocères. Soci- eté Linnéenne. Lyon, França.
- AN, X., Z. DU, J. ZHANG, Y. LI & J. QI. 2012. Structure of the zooplankton community in Hulun Lake, China. Procedia Environmental Sciences, 13: 1099-1109. DOI: 10.1016/j. proenv.2012.01.103
- APHA, AWWA & WPCF. 1989. Standard meth- ods for the examination of water and waste- water. 17 th Edition. American Public Health Association, Washington, DC, USA.
- AZEVÊDO, D., J. BARBOSA, W. GOMES, D. PORTO, J. MARQUES & J. MOLOZZI. 2015. Diversity measures in macroinverte- brate and zooplankton communities related to the trophic status of subtropical reservoirs: contradictory or complementary responses? Ecological Indicators, 50: 135-149. DOI: 10.1016/j.ecolind.2014.10.010
- BARNETT, A. & B. E. BEISNER. 2007. Zooplankton biodiversity and lake trophic state: explanations invoking resource abun- dance and distribution. Ecology, 88: 1675-1686. DOI: 10.1890/06-1056.
- BARNETT, A. J., K. FINLAY & B. E. BEIS- NER. 2007. Functional diversity of crusta- cean zooplankton communities: towards a trait-based classification. Freshwater Biolo- gy, 52: 796-813. DOI: 10.1111/j.1365-2427. 2007.01733.x BELLINGER, E. G. & D. C. SIGEE. 2015. Freshwater algae: identification and use as bioindicators. John Wiley & Sons. UK.
- BERN, L. 1990. Size-related discrimination of nutritive and inert particles by freshwater zooplankton. Journal of Plankton Research, 12: 1059-1067.
- BERN, L. 1994. Particle selection over a broad size range by crustacean zooplankton. Fresh- water Biology, 32: 105-112.
- BORCARD, D., P. LEGENDRE & P. DRA- PEAU. 1992. Partialling out the spatial com- ponent of ecological variation. Ecology, 73: 1045-1055. DOI: 10.2307/1940179
- BOXSHALL, G. A. & S. H. HALSEY. 2004. An introduction to copepod diversity. The Ray Society. London. UK.
- BROOKS, J. L. & S. I. DODSON. 1965. Preda- tion, body size, and composition of plankton. Science, 150 (3692): 28-35. DOI: 10.1126/ science.150.3692.28
- BROWER, J. E., J. H. ZAR & C. VON ENDE. 1998. Field and laboratory methods for general ecology. Mass: WCB McGraw-Hill. Boston. USA.
- CABECINHA, E., R. CORTES, J. A. CABRAL, T. FERREIRA, M. LOURENÇO & M. Â. PARDAL. 2009a. Multi-scale approach using phytoplankton as a first step towards the definition of the ecological status of reser- voirs. Ecological Indicators, 9: 240-255. DOI: 10.1016/j.ecolind.2008.04.006
- CABECINHA, E., P. J. VAN DEN BRINK, J. A. CABRAL, R. CORTES, M. LOURENÇO & M. Â. PARDAL. 2009b. Ecological relation- ships between phytoplankton communities and different spatial scales in European reser- voirs: implications at catchment level moni- toring programmes. Hydrobiologia, 628: 27-45. DOI: 10.1007/s10750-009-9731-y CARLSON, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography, 22: 361-369. DOI: 10.4319/lo.1977.22.2.0361
- CARMAN, K. R. & D. THISTLE. 1985 Microbi- al food partitioning by three species of benthic copepods. Marine Biology, 88: 143-148.
- CARONI, R. & K. IRVINE. 2010. The potential of zooplankton communities for ecological assessment of lakes: redundant concept or Zooplankton as a bioindicator to assess water quality political oversight? Biology and Environment: Proceedings of the Royal Irish Academy, 110B: 35-53. https://www.jstor.org/stable/ 20799767
- CASTRO, B. B., S. C. ANTUNES, R. PEREIRA, A. M. V. M. SOARES & F. GONÇALVES. 2005. Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia, 543: 221-232. DOI: 10.1007/s10750-004-7453-8
- CATALAN, J., M. VENTURA, A. MUNNÉ & L. GODÉ. 2003. Desenvolupament d'un index integral de qualitat ecologica i regionalitza- cio ambiental dels sistemes lacustres de Cata- lunya [Development of an integral index on ecological quality and environmental region- alization of lake systems in Catalonia]. Agen- cia Catalana de l'Aigua. Generalitat de Cata- lunya, Departament de Medi Ambient i Habi- tatge. Barcelona. Spain.
- CELEKLI, A. & B. ÖZTÜRK. 2014. Determina- tion of ecological status and ecological prefer- ences of phytoplankton using multivariate approach in a Mediterranean reservoir. Hydrobiologia, 740: 115-135. DOI: 10.1007/ s10750-014-1948-8
- CHEN, G., C. DALTON & D. TAYLOR. 2010. Cladocera as indicators of trophic state in Irish lakes. Journal of Paleolimnology, 44: 465-481. DOI: 10.1007/s10933-010-9428-2
- CZERNIAWSKI, R. & J. DOMAGAŁA. 2010. Similarities in zooplankton community between River Drawa and its two tributaries (Polish part of River Odra). Hydrobiologia, 638: 137-149. DOI: 10.1007/s10750-009- 0036-y DEMOTT, W. R. 1985. Relations between filter mesh-size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie, 21: 125-134.
- DEMOTT, W. R. & W. C. KERFOOT. 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daph- nia. Ecology, 63: 1949-1966. DOI: 10.2307/ 1940132
- GELLER, W. & H. MÜLLER. 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecolo- gia, 49: 316-321. DOI: 10.1007/BF00347591
- GERALDES, A. M. & M. -J. BOAVIDA. 2007. Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels. Aquatic Ecology, 41: 273-284. DOI: 10.1007/s10452-006-9057-z GLIWICZ, Z. M. 1977. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekologia Polska, 25: 179-225.
- HARDING, J. P. & W. A. SMITH. 1974. A key to the British freshwater cyclopoid and calanoid copepods: with ecological notes. Freshwater Biological Association Westmo- reland. Iver. UK.
- HABERMAN, J. & M. HALDNA. 2014. Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. Journal of Limnology, 73: 61-71. DOI: 10.4081/jlimnol.2014.828
- HERSCHY, R. W. 2012. Dams and reservoirs, role. In: Encyclopedia of Lakes and Reser- voirs. L. Bengtsson, R. W. Herachy & R. W. Fairbridge (eds.): 191-199. Springer. Canada.
- HESSEN, D. O. 1985. Filtering structures and particle size selection in coexisting Cladocera. Oecologia, 66: 368-372.
- HESSEN, D. O., B. A. FAAFENG, V. H. SMITH, V. BAKKESTUEN & B. WALSENG. 2006. Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology, 87: 433-443. DOI: 10.1890/05-0352 INAG. 2009. Critérios para a classificação do estado das massas de água superficiais -Rios e Albufeiras. I.P. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimen- to Regional. Instituto da Água, I.P. Portugal.
- INAG, I. P. 2009b. Manual para a avaliação da qualidade biológica da água. Protocolo de amostragem e análise para o Fitoplâncton. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P. Portugal. INAG. 2012. Plano de gestão da região hidrográfica do Cávado, ave e Leça. Relatório de base. Parte 2 -caracterização e diagnóstico da região hidrográfica. APA. Almeida et al. Portugal.
- JENSEN, T. C., I. DIMANTE-DEIMANTOVI- CA, A. K. SCHARTAU & B. WALSENG. 2013. Cladocerans respond to differences in trophic state in deeper nutrient poor lakes from Southern Norway. Hydrobiologia, 715: 101-112. DOI: 10.1007/s10750-012-1413-5
- JEPPESEN, E., P. NÕGES, T. A. DAVIDSON, J. HABERMAN, T. NÕGES, K. BLANK, T. L. LAURIDSEN, M. SØNDERGAARD, C. SAYER & R. LAUGASTE. 2011. Zooplank- ton as indicators in lakes: a scientific-based plea for including zooplankton in the ecologi- cal quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 676: 279-297. DOI: 10.1007/s10750-011-0831-0
- KEHAYIAS, G., E. CHALKIA, S. CHALKIA, G. NISTIKAKIS, I. ZACHARIAS & A. ZOTOS. 2008. Zooplankton dynamics in the upstream part of Stratos reservoir (Greece). Biologia, 63: 699-710. DOI: 10.2478/s11756- 008-0129-5
- KRISTENSEN, P., M. SØNDERGAARD & E. JEPPESEN. 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia, 228: 101-109. DOI: 10.1007/BF00006481
- LEE, S. -W., S. -J. HWANG, S. -B. LEE, H. -S. HWANG & H. -C. SUNG. 2009. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Plan- ning, 92: 80-89. DOI: 10.1016/j.landurbplan. 2009.02.008
- LI, X., H. YU & C. MA. 2014. Zooplankton com- munity structure in relation to environmental factors and ecological assessment of water quality in the Harbin Section of the Songhua River. Chinese Journal of Oceanology and Limnology, 32: 1344-1351. DOI: 10.1007/ s00343-014-3303-3
- LORENZEN, C. J. 1967. Determination of chlo- rophyll and pheo-pigments: spectrophotomet- ric equations. Limnology and Oceanography, 12: 343-346. DOI: 10.4319/lo.1967.12.2.0343
- MARTINEZ-HARO, M., R. BEIRAS, J. BELLAS, R. CAPELA, J. P. COELHO, I. LOPES, M. MOREIRA-SANTOS, A. M. REIS-HENRIQUES, R. RIBEIRO & M. M. SANTOS. 2015. A review on the ecological quality status assessment in aquatic systems using community based indicators and ecotoxicological tools: what might be the added value of their combination? Ecological Indicators, 48: 8-16. DOI: 10.1016/j.ecolind. 2014.07.024
- MCCARTNEY, M., C. SULLIVAN, M. C. ACREMAN & D. MCALLISTER. 1999. Ecosystem impacts of large dams. Internation- al Union for Conservation of Nature, Gland, Switzerland, Centre for Ecology and Hydrolo- gy. Wallingford. UK.
- MOLLES, M. C. & J. F. CAHILL. 1999. Ecology: concepts and applications. WCB/McGraw- Hill Dubuque, IA.
- MOSS, B., D. STEPHEN, C. ALVAREZ, E. BECARES, W. VAN DE BUND, S. E. COLLINGS, E. VAN DONK, E. DE EYTO, T. FELDMANN, C. FERNÁNDEZ-ALÁEZ, M. FERNÁNDEZ-ALÁEZ, R. J. M. FRANK- EN, F. GARCÍA-CRIADO, E. M. GROSS, M. GYLLSTRÖM, L. -A. HANSSON, K. IRVINE, A. JÄRVALT, J. -P. JENSEN, E. JEPPESEN, T. KAIRESALO, R. KORNI- JÓW, T. KRAUSE, H. KÜNNAP, A. LAAS, E. LILL, B. LORENS, H. LUUP, M. R. MIR- ACLE, P. NÕGES, T. NÕGES, M. NYKÄ- NEN, I. OTT, W. PECZULA, E. T. H. M. PEETERS, G. PHILLIPS, S. ROMO, V. RUSSEL, J. SALUJÕE, M. SCHEFFER, K. SIEWERTSEN, H. SMAL, C. TESCH, H. TIMM, L. TUVIKENE, I. TONNO, T. VIRRO, E. VICENTE & D. WILSON. 2003. The determination of ecological status in shallow lakes -a tested system (ECOF- RAME) for implementation of the European Water Framework Directive. Aquatic Conser- vation: Marine and Freshwater Ecosystems, 13: 507-549. DOI: 10.1002/aqc.592
- NAVARRO, E., L. CAPUTO, R. MARCÉ, J. CAROL, L. BENEJAM, E. GARCÍA- BERTHOU & J. ARMENGOL. 2009. Ecological classification of a set of Mediter- ranean reservoirs applying the EU Water Framework Directive: a reasonable compro- mise between science and management. Lake and Reservoir Management, 25: 364-376. DOI: 10.1080/07438140903238567
- Zooplankton as a bioindicator to assess water quality NOGUEIRA, M. G. 2001. Zooplankton composi- tion, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil. Hydrobiologia, 455: 1-18. DOI: 10.1023/A:1011946708757
- O'BRIEN, W. J., M. BARFIELD, N. D. BETTEZ, G. M. GETTEL, A. E. HERSHEY, M. E. MCDONALD, M. C. MILLER, H. MOOERS, J. PASTOR & C. RICHARDS. 2004. Physical, chemical, and biotic effects on arctic zooplank- ton communities and diversity. Limnology and Oceanography, 49: 1250-1261. DOI: 10.4319/ lo.2004.49.4_part_2.1250
- ØKLAND, R. H. & O. EILERSTEN. 1994. Canonical correspondence analysis with variation partitioning: some comments and an application. Journal of Vegetation Science, 5: 117-126. DOI: 10.2307/3235645
- PADISÁK, J., G. BORICS, G. FEHÉR, I. GRIG- ORSZKY, I. OLDAL, A. SCHMIDT & Z. ZÁMBÓNÉ-DOMA. 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplank- ton assemblages in Hungarian small shallow lakes. Hydrobiologia, 502: 157-168. DOI: 10.1023/B:HYDR.0000004278.10887.40
- PAN, Y., A. HERLIHY, P. KAUFMANN, J. WIGINGTON, J. VAN SICKLE & T. MOSER. 2004. Linkages among land-use, water quality, physical habitat conditions and lotic diatom assemblages: a multi-spatial scale assessment. Hydrobiologia, 515: 59-73. DOI: 10.1023/B:HYDR.0000027318.11417.e7
- PORTER, K. G., Y. S. FEIG & E. F. VETTER. 1983. Morphology, flow regimes, and filter- ing rates of Daphnia, Ceriodaphnia, and Bosmina fed natural bacteria. Oecologia, 58: 156-163. DOI: 10.1007/BF00399211.
- RIEPER, M. 1978. Bacteria as food for marine harpacticoid copepods. Marine Biology, 45: 337-345.
- SANTOS, R., L. S. FERNANDES, M. PEREIRA, R. CORTES & F. PACHECO. 2015. A frame- work model for investigating the export of phosphorus to surface waters in forested water- sheds: implications to management. Science of the Total Environment, 536: 295-305. DOI: 10.1016/j.scitotenv.2015.07.058.
- SCHINDLER, D. 1977. Evolution of phosphorus limitation in lakes. Science, 195: 260-262. DOI: 10.1126/science.195.4275.260
- SEIFRIED, S. & J. DÜRBAUM. 2000. First clear case of carnivory in marine copepoda Harpacticoida. Journal of Natural History, 34: 1595-1618.
- SMITH, V. H., G. D. TILMAN & J. C. NEKOLA. 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100: 179-196. DOI: 10.1016/S0269- 7491(99)00091-3
- TURNER, R. E. & N. N. RABALAIS. 2003. Linking landscape and water quality in the Mississippi River basin for 200 years. BioSci- ence, 53: 563-572. DOI: 10.1641/0006-3568 (2003)053[0563:LLAWQI]2.0.CO;
- WFD -Water Framework Directive. 2000. Directive 2000/60/EC of the European Parlia- ment and of the Council establishing a frame- work for the Community action in the field of water policy. Con el patrocinio de: