A Novel Antidipteran Bacillus thuringiensis Strain: Unusual Cry Toxin Genes in a Highly Dynamic Plasmid Environment (original) (raw)

Molecular Approaches to Improve the Insecticidal Activity of Bacillus thuringiensis Cry Toxins

Toxins, 2014

Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on OPEN ACCESS Toxins 2014, 6 2394 Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity.

Evolution of Bacillus thuringiensis Cry toxins insecticidal activity

Microbial Biotechnology, 2013

Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures.

Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity

Toxins, 2014

Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize

Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins

Toxins, 2014

Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III) and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.

Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis

Bacillus thuringiensis Cry toxins have been widely used in the control of insect pests either as spray products or expressed in transgenic crops. These proteins are pore-forming toxins with a complex mechanism of action that involves the sequential interaction with several toxin-receptors. Cry toxins are specific against susceptible larvae and although they are often highly effective, some insect pests are not affected by them or show low susceptibility. In addition, the development of resistance threatens their effectiveness, so strategies to cope with all these problems are necessary. In this review we will discuss and compare the different strategies that have been used to improve insecticidal activity of Cry toxins. The activity of Cry toxins can be enhanced by using additional proteins in the bioassay like serine protease inhibitors, chitinases, Cyt toxins, or a fragment of cadherin receptor containing a toxin-binding site. On the other hand, different modifications performed in the toxin gene such as site-directed mutagenesis, introduction of cleavage sites in specific regions of the protein, and deletion of small fragments from the amino-terminal region lead to improved toxicity or overcome resistance, representing interesting alternatives for insect pest control.

Screening and identification of a Bacillus thuringiensis strain S1/4 with large and efficient insecticidal activities

Journal of basic microbiology, 2013

The bacterium Bacillus thuringiensis was recognized for its entomopathogenic activities related to Cry and Cyt proteins forming the δ-endotoxins and some extracellular activities like the vegetative insecticidal proteins (VIP) and Cry1I. These activities may act specifically against diverse organisms and some of them typically characterize each strain. Here, we screened a set of 212 B. thuringiensis strains to search the higher insecticidal activities. These strains had bipyramidal and cubic crystal morphologies and 30% of them showed PCR amplification of vip3 internal region, from which five isolates (S1/4, S17, S122, S123, and S144) showed plasmid profile variability. These five strains contained the cry1I, cry1Aa and/or cry1Ac, cry1Ab and cry2 genes, and S1/4 harbored in addition the cry1C, vip1, and vip2 genes. They produced from 25 to 46 µg δ-endotoxin per 10(7) spores. Their δ-endotoxins displayed distinct lethal concentrations 50% against either Spodoptera littoralis or Ephes...

Whole-Genome Analysis of Bacillus thuringiensis Revealing Partial Genes as a Source of Novel Cry Toxins

Applied and environmental microbiology, 2018

Despite the successful application of crystal proteins (Cry) from as biological control agents against insects, there is an increasing demand to identify new Cry toxins having higher toxicity and broad-spectrum activity against insects and plant-parasitic nematodes. To find novel Cry toxins, we screened 100 whole-genome sequences of Surprisingly, in addition to full Cry toxins, we found partial sequences, such as typical N-terminal or C-terminal regions with conserved domains, widely distributed among 20 strains of In order to further elucidate the functions of partial genes, here, we selected a partial sequence from strain C15, having 28% similarity with the N terminus of Cry5Ba and lacking a typical C terminus, and denoted it Cry5B-like N terminus. This fragment when coexpressed as a fusion protein with the C terminus of Cry5Ba (N-C fusion protein) produces pyramidal crystals. A recombinant N-C fusion protein having a 50% lethal concentration (LC) of 23.7 μg/ml severely affected t...

Occurrence and Linkage Between Secreted Insecticidal Toxins in Natural Isolates of Bacillus thuringiensis

Current Microbiology, 2003

Little is known about the occurrence and linkage between secreted insecticidal virulence factors in natural populations of Bacillus thuringiensis (Bt). We carried out a survey of 392 Bt strains isolated from various samples originating from 31 countries. The toxicity profile of the culture supernatants of these strains was determined individually against Anthonomus grandis (Coleoptera) and Spodoptera littoralis (Lepidoptera). We analyzed ␤-exotoxin I production and searched for the genes encoding Vip1-2, Vip3, and Cry1I toxins in 125 of these strains. Our results showed that these insecticidal toxins were widespread in Bt but that their distribution was nonrandom, with significant linkage observed between vip3 and cry1I and between vip1-2 and ␤-exotoxin I. Strains producing significant amounts of ␤-exotoxin I were more frequently isolated from invertebrate samples than from dust, water, soil, or plant samples.