High Flux Isotope Reactor Low Enriched Uranium Low Density Silicide Fuel Design Parameters (original) (raw)
Abstract
High Flux Isotope Reactor (HFIR) highly enriched uranium (HEU) to low-enriched uranium (LEU) conversion activities are ongoing as part of the Department of Energy (DOE) National Nuclear Security Administration (NNSA)'s nuclear nonproliferation mission. Design activities studying the conversion of HFIR from HEU to LEU fuel explored different fuel design features and shapes with a low density uranium-silicide dispersion (U 3 Si 2-Al) fuel, which has a uranium density of 4.8 gU/cm 3. The goal of these studies is to generate several HFIR LEU fuel designs of varying fuel fabrication complexity that meet the current HEU performance metrics and safety requirements. The documented designs will serve as references for fuel fabrication and qualification activities. Recent advancements in modeling and simulation tools enable quick prototyping of fuel designs. Shift, a Monte Carlo neutron transport and depletion tool optimized for high-performance computing (HPC) architectures, is used for efficient fuel cycle and performance metrics calculations. The HFIR Steady State Heat Transfer Code (HSSHTC) is used to vet the thermal safety margin. Also, a new automation tool that connects all fuel design analysis steps, named Python HFIR Analysis and Measurement Engine (PHAME), has been developed to expedite the design study in an efficient and reproducible manner. Leveraging these tools, several candidate fuel designs were selected for varying fabrication complexity. This report provides design feature details for four selected HFIR LEU low density U 3 Si 2-Al fuel designs and their corresponding performance and safety metrics. Nominal, best-estimate design parameters and irradiation conditions, including fission rate densities, power densities, heat fluxes, and cumulative fission densities are provided for candidate fuel designs relevant to framing irradiation experiments to support fuel qualification efforts. Simulations show that the low density U 3 Si 2-Al, with design features to enhance safety, can meet HEU core performance metrics and safety requirements if the reactor power is increased from 85 MW (HEU) to 95 MW (LEU) and if the active fuel length is increased from 50.80 cm (HEU) to 55.88 cm (LEU). * This Q value of 200.7 Mev/fission is a 'typical' Q value used in HFIR analyses close to the approximate cycle-averaged value that was recently calculated for the optimized silicide design. The BOC and EOC Q values were estimated to be 200.49 and 201.46 MeV/fission, respectively, givin the average Q value of 200.98 MeV/fission [9].
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (52)
- 1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 33 Fission rate density distribution for optimized design IFE region on day 1 (see Section 7.1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 34 Fission rate density distribution for optimized design IFE region on day 15 (see Section 7.1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 35 Fission rate density distribution for optimized design IFE region on day 27 (see Section 7.1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 36 Fission rate density distribution for optimized design OFE region on day 0 (see Section 7.1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 37 Fission rate density distribution for optimized design OFE region on day 1 (see Section 7.1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 38 Fission rate density distribution for optimized design OFE region on day 2 (see Section 7.1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 39 Fission rate density distribution for optimized design OFE region on day 15 (see Section 7.1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 40 Fission rate density distribution for optimized design OFE region on day 27 (see Section 7.1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 41 Cumulative fission density distribution for optimized design IFE region on day 1 (see Section 7.1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 42 Cumulative fission density distribution for optimized design IFE region on day 15 (see Section 7.1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 43 Cumulative fission density distribution for optimized design IFE region on day 27 (see Section 7.1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 44 Cumulative fission density distribution for optimized design OFE region on day 1 (see Section 7.1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 45 Cumulative fission density distribution for optimized design OFE region on day 15 (see Section 7.1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 46 Cumulative fission density distribution for optimized design OFE region on day 27 (see Section 7.1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 47 Power density distribution for optimized design IFE region on day 0 (see Section 7.1.3). . A - 48 Power density distribution for optimized design IFE region on day 1 (see Section 7.1.3). . A - 49 Power density distribution for optimized design IFE region on day 15 (see Section 7.1.3). A - 50 Power density distribution for optimized design IFE region on day 27 (see Section 7.1.3). A - 51 Power density distribution for optimized design OFE region on day 0 (see Section 7.1.3). A - 52 Power density distribution for optimized design OFE region on day 1 (see Section 7.1.3). A - 53 Power density distribution for optimized design OFE region on day 2 (see Section 7.1.3). A - 54 Power density distribution for optimized design OFE region on day 15 (see Section 7.1.3). A - 55 Power density distribution for optimized design OFE region on day 27 (see Section 7.1.3). A - 56 Heat flux distribution for optimized design IFE region on day 0 (see Section 7.1.4). . . . A - 57 Heat flux distribution for optimized design IFE region on day 1 (see Section 7.1.4). . . . A - 58 Heat flux distribution for optimized design IFE region on day 15 (see Section 7.1.4). . . A - 59 Heat flux distribution for optimized design IFE region on day 27 (see Section 7.1.4). . . A - 60 Heat flux distribution for optimized design OFE region on day 0 (see Section 7.1.4). . . A - 61 Heat flux distribution for optimized design OFE region on day 1 (see Section 7.1.4). . . A - v 62 Heat flux distribution for optimized design OFE region on day 2 (see Section 7.1.4). . . A - 63 Heat flux distribution for optimized design OFE region on day 15 (see Section 7.1.4). . . A - 64 Heat flux distribution for optimized design OFE region on day 27 (see Section 7.1.4). . . A - 65 Fission rate density distribution for alternate 1 design IFE region on day 0 (see Section 7.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 66 Fission rate density distribution for alternate 1 design IFE region on day 1 (see Section 7.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 67 Fission rate density distribution for alternate 1 design IFE region on day 15 (see Section 7.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 68 Fission rate density distribution for alternate 1 design IFE region on day 27 (see Section 7.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 69 Fission rate density distribution for alternate 1 design OFE region on day 0 (see Section 7.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 70 Fission rate density distribution for alternate 1 design OFE region on day 1 (see Section 7.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 71 Fission rate density distribution for alternate 1 design OFE region on day 2 (see Section 7.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 72 Fission rate density distribution for alternate 1 design OFE region on day 15 (see Section 7.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 73 Fission rate density distribution for alternate 1 design OFE region on day 27 (see Section 7.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 74 Cumulative fission density distribution for alternate 1 design IFE region on day 1 (see Section 7.2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 75 Cumulative fission density distribution for alternate 1 design IFE region on day 15 (see Section 7.2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 76 Cumulative fission density distribution for alternate 1 design IFE region on day 27 (see Section 7.2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 77 Cumulative fission density distribution for alternate 1 design OFE region on day 1 (see Section 7.2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 78 Cumulative fission density distribution for alternate 1 design OFE region on day 15 (see Section 7.2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 79 Cumulative fission density distribution for alternate 1 design OFE region on day 27 (see Section 7.2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B - 80 Power density distribution for alternate 1 design IFE region on day 0 (see Section 7.2.3). B - 81 Power density distribution for alternate 1 design IFE region on day 1 (see Section 7.2.3). B - 82 Power density distribution for alternate 1 design IFE region on day 15 (see Section 7.2.3). B - 83 Power density distribution for alternate 1 design IFE region on day 27 (see Section 7.2.3). B - 84 Power density distribution for alternate 1 design OFE region on day 0 (see Section 7.2.3). B - 85 Power density distribution for alternate 1 design OFE region on day 1 (see Section 7.2.3). B - 86 Power density distribution for alternate 1 design OFE region on day 2 (see Section 7.2.3). B - 87 Power density distribution for alternate 1 design OFE region on day 15 (see Section 7.2.3). B - 88 Power density distribution for alternate 1 design OFE region on day 27 (see Section 7.2.3). B - 89 Heat flux distribution for alternate 1 design IFE region on day 0 (see Section 7.2.4). . . B - 90 Heat flux distribution for alternate 1 design IFE region on day 1 (see Section 7.2.4). . . B - 91 Heat flux distribution for alternate 1 design IFE region on day 15 (see Section 7.2.4). . . B - vi
- Heat flux distribution for alternate 1 design IFE region on day 27 (see Section 7.2.4). . . B - 93 Heat flux distribution for alternate 1 design OFE region on day 0 (see Section 7.2.4). . . B - 94 Heat flux distribution for alternate 1 design OFE region on day 1 (see Section 7.2.4). . . B - 95 Heat flux distribution for alternate 1 design OFE region on day 2 (see Section 7.2.4). . . B - 96 Heat flux distribution for alternate 1 design OFE region on day 15 (see Section 7.2.4). . B - 97 Heat flux distribution for alternate 1 design OFE region on day 27 (see Section 7.2.4). . B - 98 Fission rate density distribution for alternate 2 design IFE region on day 0 (see Section 7.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 99 Fission rate density distribution for alternate 2 design IFE region on day 1 (see Section 7.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 100 Fission rate density distribution for alternate 2 design IFE region on day 15 (see Section 7.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 101 Fission rate density distribution for alternate 2 design IFE region on day 27 (see Section 7.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 102 Fission rate density distribution for alternate 2 design OFE region on day 0 (see Section 7.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 103 Fission rate density distribution for alternate 2 design OFE region on day 1 (see Section 7.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 104 Fission rate density distribution for alternate 2 design OFE region on day 15 (see Section 7.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 105 Fission rate density distribution for alternate 2 design OFE region on day 27 (see Section 7.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 106 Cumulative fission density distribution for alternate 2 design IFE region on day 1 (see Section 7.3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 107 Cumulative fission density distribution for alternate 2 design IFE region on day 15 (see Section 7.3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 108 Cumulative fission density distribution for alternate 2 design IFE region on day 27 (see Section 7.3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 109 Cumulative fission density distribution for alternate 2 design OFE region on day 1 (see Section 7.3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 110 Cumulative fission density distribution for alternate 2 design OFE region on day 15 (see Section 7.3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 111 Cumulative fission density distribution for alternate 2 design OFE region on day 27 (see Section 7.3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 112 Power density distribution for alternate 2 design IFE region on day 0 (see Section 7.3.3). C - 113 Power density distribution for alternate 2 design IFE region on day 1 (see Section 7.3.3). C - 114 Power density distribution for alternate 2 design IFE region on day 15 (see Section 7.3.3). C - 115 Power density distribution for alternate 2 design IFE region on day 27 (see Section 7.3.3). C - 116 Power density distribution for alternate 2 design OFE region on day 0 (see Section 7.3.3). C - 117 Power density distribution for alternate 2 design OFE region on day 1 (see Section 7.3.3). C - 118 Power density distribution for alternate 2 design OFE region on day 15 (see Section 7.3.3). C - 119 Power density distribution for alternate 2 design OFE region on day 27 (see Section 7.3.3). C - 120 Heat flux distribution for alternate 2 design IFE region on day 0 (see Section 7.3.4). . . C - 121 Heat flux distribution for alternate 2 design IFE region on day 1 (see Section 7.3.4). . . C - 122 Heat flux distribution for alternate 2 design IFE region on day 15 (see Section 7.3.4). . . C - vii 123 Heat flux distribution for alternate 2 design IFE region on day 27 (see Section 7.3.4). . . C - 124 Heat flux distribution for alternate 2 design OFE region on day 0 (see Section 7.3.4). . . C - 125 Heat flux distribution for alternate 2 design OFE region on day 1 (see Section 7.3.4). . . C - 126 Heat flux distribution for alternate 2 design OFE region on day 15 (see Section 7.3.4). . C - 127 Heat flux distribution for alternate 2 design OFE region on day 27 (see Section 7.3.4). . C - 128 Fission rate density distribution for alternate 3 design IFE region on day 0 (see Section 7.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 129 Fission rate density distribution for alternate 3 design IFE region on day 1 (see Section 7.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 130 Fission rate density distribution for alternate 3 design IFE region on day 15 (see Section 7.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 131 Fission rate density distribution for alternate 3 design IFE region on day 27 (see Section 7.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 132 Fission rate density distribution for alternate 3 design OFE region on day 0 (see Section 7.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 133 Fission rate density distribution for alternate 3 design OFE region on day 1 (see Section 7.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 134 Fission rate density distribution for alternate 3 design OFE region on day 2 (see Section 7.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 135 Fission rate density distribution for alternate 3 design OFE region on day 15 (see Section 7.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 136 Fission rate density distribution for alternate 3 design OFE region on day 27 (see Section 7.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 137 Cumulative fission density distribution for alternate 3 design IFE region on day 1 (see Section 7.4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 138 Cumulative fission density distribution for alternate 3 design IFE region on day 15 (see Section 7.4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 139 Cumulative fission density distribution for alternate 3 design IFE region on day 27 (see Section 7.4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 140 Cumulative fission density distribution for alternate 3 design OFE region on day 1 (see Section 7.4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 141 Cumulative fission density distribution for alternate 3 design OFE region on day 15 (see Section 7.4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 142 Cumulative fission density distribution for alternate 3 design OFE region on day 27 (see Section 7.4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D - 143 Power density distribution for alternate 3 design IFE region on day 0 (see Section 7.4.3). D - 144 Power density distribution for alternate 3 design IFE region on day 1 (see Section 7.4.3). D - 145 Power density distribution for alternate 3 design IFE region on day 15 (see Section 7.4.3). D - 146 Power density distribution for alternate 3 design IFE region on day 27 (see Section 7.4.3). D - 147 Power density distribution for alternate 3 design OFE region on day 0 (see Section 7.4.3). D - 148 Power density distribution for alternate 3 design OFE region on day 1 (see Section 7.4.3). D - 149 Power density distribution for alternate 3 design OFE region on day 2 (see Section 7.4.3). D - 150 Power density distribution for alternate 3 design OFE region on day 15 (see Section 7.4.3). D - 151 Power density distribution for alternate 3 design OFE region on day 27 (see Section 7.4.3). D - 152 Heat flux distribution for alternate 3 design IFE region on day 0 (see Section 7.4.4). . . D - viii 153 Heat flux distribution for alternate 3 design IFE region on day 1 (see Section 7.4.4). . . D - 154 Heat flux distribution for alternate 3 design IFE region on day 15 (see Section 7.4.4). . . D - 155 Heat flux distribution for alternate 3 design IFE region on day 27 (see Section 7.4.4). . . D - 156 Heat flux distribution for alternate 3 design OFE region on day 0 (see Section 7.4.4). . . D - 157 Heat flux distribution for alternate 3 design OFE region on day 1 (see Section 7.4.4). . . D - 158 Heat flux distribution for alternate 3 design OFE region on day 2 (see Section 7.4.4). . . D - 159 Heat flux distribution for alternate 3 design OFE region on day 15 (see Section 7.4.4). . D - 160 Heat flux distribution for alternate 3 design OFE region on day 27 (see Section 7.4.4). . D - 9. REFERENCES
- J. Bae, B. R. Betzler, D. Chandler, G. Ilas, and M. J. L. High Flux Isotope Reactor Low-Enriched Uranium High Density Silicide Fuel Design Parameters. Technical Report ORNL/TM-2020-1799, United States, Apr. 2020.
- J. W. Bae, B. R. Betzler, D. Chandler, and G. Ilas. Automated Fuel Design Optimization for High Flux Isotope Reactor Low Enriched Uranium Neutronic and Thermal Hydraulic Core Design. In ,Proc. Intl. Conf. PHYSOR 2020, Cambridge, UK, 2020.
- B. R. Betzler, B. J. Ade, D. Chandler, G. Ilas, and E. E. Sunny. Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor. In Proceedings of ANS Mathematics and Computational Topical Meeting, Nashville, Tennessee, USA, Apr. 2015.
- B. R. Betzler, D. Chandler, D. H. Cook, E. E. Davidson, and G. Ilas. Design Optimization Methods for High-performance Research Reactor Core Design. Nuclear Engineering and Design, 352, Oct. 2019.
- B. R. Betzler, D. Chandler, D. H. Cook, E. E. Davidson (née Sunny), and G. Ilas. High Flux Isotope Reactor Low-Enriched Uranium Core Design Optimization Studies. In ,Proc. Intl. Conf. PHYSOR 2018, Cancun, Mexico, Apr. 2018.
- B. R. Betzler, D. Chandler, E. E. Davidson, and G. Ilas. Design Optimization Studies for a High Flux Isotope Reactor Low-Enriched Uranium Core. Trans. Am. Nucl. Soc., 117, 2017.
- B. R. Betzler, D. Chandler, E. E. Davidson, and G. Ilas. High-Fidelity Modeling and Simulation for a High Flux Isotope Reactor Low-Enriched Uranium Core Design. Nuclear Science and Engineering, 187(1):81-99, July 2017.
- B. R. Betzler, D. Chandler, E. E. Davidson, and G. Ilas. Optimized Design Performance Analysis Tools for a High Flux Isotope Reactor Low-Enriched Uranium Core. Trans. Am. Nucl. Soc., 119, 2018.
- D. Chandler, B. R. Betzler, J. W. Bae, D. H. Cook, and G. Ilas. Conceptual Fuel Element Design Candidates for Conversion of High Flux Isotope Reactor with Low-Enriched Uranium Silicide Dispersion Fuel. In ,Proc. Intl. Conf. PHYSOR 2020, Cambridge, UK, 2020.
- D. Chandler, B. R. Betzler, D. H. Cook, G. Ilas, and D. G. Renfro. Neutronic and Thermal-Hydraulic Feasibility Studies for High Flux Isotope Reactor Conversion to Low-Enriched Uranium U3Si2-Al Fuel. In ,Proc. Intl. Conf. PHYSOR 2018, Cancun, Mexico, Apr. 2018.
- D. Chandler, B. R. Betzler, D. H. Cook, G. Ilas, and D. G. Renfro. Neutronic and Thermal-hydraulic Feasibility Studies for High Flux Isotope Reactor Conversion to Low-enriched Uranium Silicide Dispersion Fuel. Annals of Nuclear Energy, 130:277-292, Aug. 2019.
- D. Chandler, B. R. Betzler, G. J. Hirtz, G. Ilas, and E. E. Sunny. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading. Technical Report ORNL/TM-2016/23, Oak Ridge National Laboratory, United States, Sept. 2016.
- D. Chandler, B. R. Betzler, P. K. Jain, J. W. Bae, D. H. Cook, V. D. Fudurich, T. K. Howard, C. J. Hurt, G. Ilas, J. L. Meszaros, and E. L. Popov. High Flux Isotope Reactor Conversion from High-Enriched to Low-Enriched Uranium Fuel -a 2019 Progress Update. In Proceedings of RERTR 2019, Zagreb, Croatia, Oct. 2019.
- R. D. Cheverton and T. M. Sims. HFIR CORE NUCLEAR DESIGN. Technical Report ORNL-4621, Oak Ridge National Lab., Tenn., Jan. 1971.
- T. Cole, L. Parsly, and W. Thomas. Revisions to the HFIR Steady States Heat Transfer Analysis Code. Technical Report ORNL/CF-86/68, Oak Ridge National Laboratory, Apr. 1986.
- G. G. Davidson, T. M. Pandya, S. R. Johnson, T. M. Evans, A. E. Isotalo, C. A. Gentry, and W. A. Wieselquist. Nuclide depletion capabilities in the Shift Monte Carlo code. Annals of Nuclear Energy, 114:259-276, Apr. 2018.
- W. Gambill. Design Curves for Burnout Heat Flux in Forced-Convection Subcooled Light Water Systems. Number ORNL-TM-2421. U.S. Atomic Energy Commission, Nov. 1968.
- IAEA. Research Reactor Core Conversion Guidebook, Volume 4: Fuels (Appendices I-K). Number 643/4 in TECDOC Series. International Atomic Energy Agency, Vienna, 1992.
- G. Ilas, B. R. Betzler, D. Chandler, D. G. Renfro, and E. E. Davidson. Key Metrics for HFIR HEU and LEU Models. Technical Report ORNL/TM-2016/581, Oak Ridge National Laboratory, United States, Oct. 2016.
- G. Ilas, D. Chandler, B. J. Ade, E. E. Sunny, B. R. Betzler, and D. L. Pinkston. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400. Technical Report ORNL/TM-2015/36, Oak Ridge National Laboratory, United States, Mar. 2015.
- T. M. Pandya, S. R. Johnson, T. M. Evans, G. G. Davidson, S. P. Hamilton, and A. T. Godfrey. Implementation, Capabilities, and Benchmarking of Shift, a Massively Parallel Monte Carlo Radiation Transport Code. Journal of Computational Physics, 308:239-272, Mar. 2016.
- R. T. Primm, R. J. Ellis, J. C. Gehin, D. L. Moses, J. L. Binder, and N. Xoubi. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel. Technical Report ORNL/TM-2005/269, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, Feb. 2006.
- D. Renfro, D. Chandler, D. Cook, G. Ilas, P. Jain, and J. Valentine. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel. Technical Report ORNL/TM-2014/154, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), Oct. 2014.
- USNRC. Safety Evaluation Report Related to the Evaluation of Low-Enriched Uranium Silicide-Aluminum Dispersion Fuel for Use in Non-Power Reactors. page 220, July 1988.
- I. Variansyah, J. W. Bae, B. R. Betzler, and G. Ilas. Metaheuristic Optimization Tool. Technical Report ORNL/TM-2019/1443, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, Mar. 2020. 25.7824.5423.3121.8920.3819.1217.9716.8615.8315.0314.4213.9413.6013.4613.4513.5613.8114.2514.8415.5716.52
- 2522.1321.0919.8218.5917.4716.6615.7915.0114.4714.0413.7213.5813.5313.6413.8914.2914.8115.4016.1517.14 24.8924.0123.2422.4521.5320.7720.0619.4118.7618.2817.9117.6517.5017.4117.4517.5417.7418.0618.4518.9219.49 Cumulative fission density [10 20 fissions cm 3 fuelparticle ]
- 95 17.10 15.98 14.71 13.67 12.80 11.99 11.24 10.49 9.74 8.99 8.25 7.73 7.48 Cumulative fission density [10 20 fissions cm 3 fuelparticle ]
- 8214.2513.6713.0512.4111.8611.3910.9910.6010.3010.06 9.91 9.81 9.75 9.77 9.86 10.0110.2010.4510.7711.19 Cumulative fission density [10 20 fissions cm 3 fuelparticle ]
- 7824.0323.2622.3921.4520.6720.0219.3618.7218.2417.8817.6117.4517.3617.3817.5217.7518.0518.4318.9319.49 Cumulative fission density [10 20 fissions cm 3 fuelparticle ]
- 94 17.11 15.96 14.70 13.68 12.79 12.00 11.25 10.51 9.75 8.98 8.25 7.75 7.47 Cumulative fission density [10 20 fissions cm 3 fuelparticle ]
- 2113.4012.7311.9111.1210.44 9.88 9.35 8.82 8.49 8.22 7.97 7.88 7.80 7.83 7.96 8.12 8.43 8.82 9.31 9.96 Cumulative fission density [10 20 fissions cm 3 fuelparticle ]
- Figure 107. Cumulative fission density distribution for alternate 2 design IFE region on day 15 (see Section 7.
- 1519.7318.2616.6414.9213.4512.2611.1210.08 9.37 8.88 8.51 8.32 8.32 8.49 8.88 9.42 10.1511.0412.1513.45 22.3220.9419.6518.1416.6015.3314.2513.2112.2311.5711.0710.6810.4810.4310.5510.8711.3712.0412.8313.8515.17 23.7722.6421.6520.4819.3018.2517.3616.5115.6415.0714.6114.1914.0113.9013.9614.1714.4814.9815.6216.3717.35 Cumulative fission density [10 20 fissions cm 3 fuelparticle ]
- 47 11.93 10.04 8.33 7.35 6.70 6.22 5.82 5.49 5.19 4.97 4.95 5.15 5.47 15.47 14.12 12.52 11.00 9.99 9.25 8.63 8.06 7.52 7.01 6.55 6.21 6.09 6.20 Cumulative fission density [10 20 fissions cm 3 fuelparticle ]
- Figure 114. Power density distribution for alternate 2 design IFE region on day 15 (see Section 7.3.3). C -17
- Figure 121. Heat flux distribution for alternate 2 design IFE region on day 1 (see Section 7.3.4). C -24
- Figure 138. Cumulative fission density distribution for alternate 3 design IFE region on day 15 (see Section 7.4.5).
- D -11
- 1920.8919.5518.0616.5115.2214.0712.9611.9411.1910.6110.20 9.98 9.87 9.99 10.2910.7711.4312.2813.3514.62 23.5922.5221.4320.2318.9817.8416.9315.9915.0614.4113.9013.5013.2313.1113.1613.3813.7614.2614.9215.6916.73 Cumulative fission density [10 20 fissions cm 3 fuelparticle ]
- Figure 145. Power density distribution for alternate 3 design IFE region on day 15 (see Section 7.4.3).
- D -18
- Figure 152. Heat flux distribution for alternate 3 design IFE region on day 0 (see Section 7.4.4). D -25
- Figure 153. Heat flux distribution for alternate 3 design IFE region on day 1 (see Section 7.4.4). D -26
- Figure 154. Heat flux distribution for alternate 3 design IFE region on day 15 (see Section 7.4.4). D -27
- Figure 155. Heat flux distribution for alternate 3 design IFE region on day 27 (see Section 7.4.4). D -28
- Figure 156. Heat flux distribution for alternate 3 design OFE region on day 0 (see Section 7.4.4). D -29
- Figure 157. Heat flux distribution for alternate 3 design OFE region on day 1 (see Section 7.4.4). D -30
- Figure 158. Heat flux distribution for alternate 3 design OFE region on day 2 (see Section 7.4.4). D -31
- Figure 159. Heat flux distribution for alternate 3 design OFE region on day 15 (see Section 7.4.4). D -32
- Figure 160. Heat flux distribution for alternate 3 design OFE region on day 27 (see Section 7.4.4). D -33