High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis (original) (raw)
Abstract
A biocompatible amine functionalized fluorescent carbon dots were developed and isolated for gram scale applications. Such carbogenic quantum dots can strongly conjugate over the surface of the chloroplast and due to that strong interaction the former can easily transfer electrons towards the latter by assistance of absorbed light or photons. An exceptionally high electron transfer from carbon dots to the chloroplast can directly effect the whole chain electron transfer pathway in a light reaction of photosynthesis, where electron carriers play an important role in modulating the system. As a result, carbon dots can promote photosynthesis by modulating the electron transfer process as they are capable of fastening the conversion of light energy to the electrical energy and finally to the chemical energy as assimilatory power (ATP and NADPH).
FAQs
AI
What is the maximum electron transfer efficiency observed from CQDs to chloroplasts?add
Electron transfer efficiency peaked at approximately 93% when CQDs and chloroplasts were at a 0.35 ratio, demonstrating effective energy transfer.
How do carbon quantum dots enhance oxygen evolution during photosynthesis?add
The presence of CQDs resulted in a notable 74.3% additional reduction of ferricyanide, indicating enhanced electron transfer and subsequently increased oxygen evolution.
What technique was used for synthesizing amine functionalized carbon quantum dots?add
A simple microwave-assisted synthesis process produced amine functionalized carbon quantum dots with a quantum yield of 4.5% at a heating power of 450 Watts.
What biochemical assays confirmed the biocompatibility of carbon quantum dots?add
MTT assays indicated $90% cell viability in HBL-100 cell lines at a concentration of 200 mg mL À1, while in vivo studies revealed no significant toxicity or organ damage.
Which electron acceptors were used to evaluate the photophosphorylation activity of chloroplasts?add
The reduction of ferricyanide and NADP were measured to assess photophosphorylation activity, showing improved electron transfer in the presence of CQDs.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (43)
- M. R. Badger and G. D. Price, J. Exp. Bot., 2003, 54, 609.
- C. Arnaud, Chem. Eng. News Archive, 2008, 86, 8.
- A. Segalla, I. Szabò, P. Costantini and G. M. Giacometti, J. Chem. Inf. Model., 2005, 45, 1691.
- P. H. Raven, R. F. Evert and S. E. Eichhorn, Biology of Plants, W. H. Freeman and Company Publishers, New York, 7th edn, 2005, p. 124.
- G. Steinberg-Yfrach, J. L. Rigaud, E. N. Durantini, A. L. Moore and T. Moore, Nature, 1998, 392, 479.
- I. Nabiev, A. Rakovich, A. Sukhanova, E. Lukashev, V. Zagidullin, V. Pachenko, Y. J. F. Donegan, A. B. Rubin and A. O. Govorov, Angew. Chem., Int. Ed., 2010, 49, 7217.
- A. O. Govorov and I. Carmeli, Nano Lett., 2007, 7, 620.
- P. Zrazhevskiy, M. Senaw and X. Gao, Chem. Soc. Rev., 2010, 39, 4326.
- W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng and Y. Huang, Chem. Commun., 2011, 47, 6695.
- D. Zhou, J. D. Piper, C. Abell, D. Klenerman, D. J. Kang and L. Ying, Chem. Commun., 2005, 4807.
- Z. Wang, A. Shakya, J. Gu, S. Lian and S. Maldonado, J. Am. Chem. Soc., 2013, 135, 9275.
- X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science, 2005, 307, 538-544.
- S. N. Baker and G. A. Baker, Angew. Chem., Int. Ed., 2010, 49, 6726.
- H. Li, Z. Kang, Y. Liu and S. T. Lee, J. Mater. Chem., 2012, 22, 24230.
- S. Chandra, P. Patra, S. H. Pathan, S. Roy, S. Mitra, A. Layek, R. Bhar, P. Pramanik and A. Goswami, J. Mater. Chem. B, 2013, 1, 2375.
- Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca and S. Y. Xie, J. Am. Chem. Soc., 2006, 128, 7756.
- S. Chandra, S. H. Pathan, S. Mitra, B. H. Modha, A. Goswami and P. Pramanik, RSC Adv., 2012, 2, 3602.
- L. Cao, X. Wang, M. J. Meziani, F. Lu, H. Wang, P. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S. Y. Xie and Y. P. Sun, J. Am. Chem. Soc., 2007, 129, 11318.
- Q. L. Zhao, Z. L. Zhang, B. H. Huang, J. Peng, M. Zhang and D. W. Pang, Chem. Commun., 2008, 5116.
- S. Chandra, P. Das, S. Bag, D. Laha and P. Pramanik, Nanoscale, 2011, 3, 1533.
- S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang and B. Yang, Angew. Chem., Int. Ed., 2013, 52, 3953.
- S. Chandra, S. Mitra, D. Laha, S. Bag, P. Das, A. Goswami and P. Pramanik, Chem. Commun., 2011, 47, 8587.
- F. Wang, S. Pang, L. Wang, Q. Li, M. Kreiter and C. Y. Liu, Chem. Mater., 2010, 22, 4528. 24 (a) L. Cao, S. Sahu, P. Anilkumar, C. E. Bunker, J. Xu, K. A. S. Fernando, P. Wang, E. A. Guliants, K. N. Tackett and Y. P. Sun, J. Am. Chem. Soc., 2011, 133, 4754; (b) S. Mitra, S. Chandra, P. Patra, P. Pramanik and A. Goswami, J. Mater. Chem., 2011, 21, 17638.
- Z. Ma, Y. L. Zhang, L. Wang, H. Ming, H. Li, X. Zhang, F. Wang, Y. Liu, Z. Kang and S. T. Lee, ACS Appl. Mater. Interfaces, 2013, 5, 5080.
- L. Sun, L. Hammarström, B. Åkermark and S. Styring, Chem. Soc. Rev., 2001, 30, 36; J. W. Lee and E. Greenbaum, J. Phys. Chem. B, 2004, 108, 3935.
- H. Liu, T. Ye and C. Mao, Angew. Chem., Int. Ed., 2007, 46, 6473.
- B. Mohanty, A. K. Verma, P. Claesson and H. B. Bohidar, Nanotechnology, 2007, 18, 445102.
- a) Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang and Y. Liu, Chem. Commun., 2012, 48, 380; (b) F. Jiang, D. Chen, R. Li, Y. Wang, G. Zhang, S. Li, J. Zheng, N. Huang, Y. Gu, C. Wang and C. Shu, Nanoscale, 2013, 5, 1137.
- Z. Lin, W. Xue, H. Chen and J. M. Lin, Chem. Commun., 2012, 48, 1051.
- S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun and B. Yang, Chem. Commun., 2011, 47, 6858.
- J. J. Shyue, M. R. D. Guire, T. Nakanishi, Y. Masuda, K. Koumoto and C. N. Sukenik, Langmuir, 2004, 20, 8693.
- J. S. Park, S. M. Cho, W. J. Kim, J. Park and P. J. Yoo, ACS Appl. Mater. Interfaces, 2011, 3, 360.
- P. Luo, Z. Ji, C. Li and G. Shi, Nanoscale, 2013, 5, 7361.
- S. Mitra, S. Chandra, T. Kundu, R. Banerjee, P. Pramanik and A. Goswami, RSC Adv., 2012, 2, 12129.
- D. Zhou, L. Ying, X. Hong, E. A. Hall, C. Abell and D. Klenerman, Langmuir, 2008, 24, 1659.
- R. Freeman and I. Willner, Chem. Soc. Rev., 2012, 41, 4067.
- A. Jaiswal, S. S. Ghosh and A. Chattopadhyay, Chem. Commun., 2012, 48, 407. 39 (a) G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken and E. Banin, Small, 2012, 8, 3326;
- J. H. Li, X. R. Liu, Y. Zheng, F. F. Tian, G. Y. Zhao, Q. L. Y. Yu, F. L. Jiang and Y. Liu, Toxicol. Res., 2012, 1, 137.
- R. Barr and F. L. Crane, Plant Physiol., 1981, 67, 1190.
- B. C. Gerwick, G. J. Williams and E. G. Uribe, Plant Physiol., 1977, 60, 430.
- S. Jana and M. A. Choudhuri, J. Aquat. Plant Manage., 1980, 18, 30.
- L. Taiz and E. Zeiger, Plant Physiology, Snauer Associates Inc., Publishers, Massachusetts, 4th edn, 2006.
- S. Mitra, B. Subia, P. Patra, S. Chandra, N. Debnath, S. Das, R. Banerjee, S. C. Kundu, P. Pramanik and A. Goswami, J. Mater. Chem., 2012, 22, 24145.