Diacylglycerol (DAG)-lactones, a New Class of Protein Kinase C (PKC) Agonists, Induce Apoptosis in LNCaP Prostate Cancer Cells by Selective Activation of PKCalpha (original) (raw)
Phorbol esters, the archetypical (PKC) activators, induce apoptosis in androgen-sensitive LNCaP prostate cancer cells. In this study we evaluate the effect of a novel class of PKC ligands, the diacylglycerol (DAG)-lactones, as inducers of apoptosis in LNCaP cells. These unique ligands were designed using novel pharmacophore-and receptorguided approaches to achieve highly potent DAG surrogates. Two of these compounds, HK434 and HK654, induced apoptosis in LNCaP cells with much higher potency than oleoyl-acetyl-glycerol or phorbol 12,13dibutyrate. Moreover, different PKC isozymes were found to mediate the apoptotic effect of phorbol 12-myristate 13-acetate (PMA) and HK654 in LNCaP cells. Using PKC inhibitors and dominant negative PKC isoforms, we found that both PKC␣ and PKC␦ mediated the apoptotic effect of PMA, whereas only PKC␣ was involved in the effect of the DAG-lactone. The PKC␣ selectivity of HK654 in LNCaP cells contrasts with similar potencies in vitro for binding and activation of PKC␣ and PKC␦. Consistent with the differences in isoform dependence in intact cells, PMA and HK654 show marked differences in their abilities to translocate PKC isozymes. Both PMA and HK654 induce a marked redistribution of PKC␣ to the plasma membrane. On the other hand, unlike PMA, HK654 translocates PKC␦ predominantly to the nuclear membrane. Thus, DAG-lactones have a unique profile of activation of PKC isozymes for inducing apoptosis in LNCaP cells and represent the first example of a selective activator of a classical PKC in cellular models. An attractive hypothesis is that selective activation of PKC isozymes by pharmacological agents in cells can be achieved by differential intracellular targeting of each PKC.