PLX9486 shows anti-tumor efficacy in patient-derived, tyrosine kinase inhibitor-resistant KIT-mutant xenograft models of gastrointestinal stromal tumors (original) (raw)

KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway

Oncogene, 2007

Most gastrointestinal stromal tumor (GIST) patients respond to KIT inhibition with imatinib, yet will eventually exhibit resistance. Imatinib-resistance mechanisms are heterogeneous, and little is known about KIT functional roles in imatinib-resistant GIST. Biological consequences of biochemical inhibition of KIT, phosphatidyl-inositol-3-kinase (PI3-K), PLCc, MAPK/ERK kinase/mitogen-activated protein kinase (MEK/MAPK), mammalian target of rapamycin (mTOR) and JAK were determined by immunoblotting for protein activation, and by cell proliferation and apoptosis assays in GIST cell lines from imatinib-sensitive GIST (GIST882), imatinibresistant GISTs (GIST430 and GIST48) and KITnegative GIST (GIST62). KIT activation was 3-to 6-fold higher in GIST430 and GIST48 than in GIST882, whereas total KIT expression was comparable in these three GIST lines. In addition to the higher set point for KIT activation, GIST430 and GIST48 had intrinsic imatinib resistance. After treatment with 1 lM imatinib, residual KIT activation was 6-and 2.8-fold higher in GIST430 and GIST48, respectively, compared to GIST882. In all GIST lines, cell growth arrest resulted from PI3-K inhibition, and-to a lesser extent-from MEK/MAPK and mTOR inhibition. Inhibition of JAK/ STAT or PLCc did not affect cell proliferation. Similarly, only PI3-K inhibition resulted in substantial apoptosis in the imatinib-resistant GISTs. We conclude that GIST secondary KIT mutations can be associated with KIT hyperactivation and imatinib resistance. Targeting critical downstream signaling proteins, such as PI3-K, is a promising therapeutic strategy in imatinib-resistant GISTs.

Are two better than one? A novel double-mutant KIT in GIST that responds to Imatinib

Molecular Oncology, 2013

Gastrointestinal stromal tumors carry in about 85% of the cases activating mutations in KIT gene. Generally only one KIT mutation is found in primary tumors and the majority of mutations affecting KIT exon 11 is sensitive to Imatinib. We report upon a GIST case harboring a double-mutant KIT gene at exon 11, which expresses a receptor bearing the known activating W557G mutation and a newly discovered missense Y578C alteration. The relative affinities for ATP and Imatinib of each single (W557G, Y578C) and double (W557G/Y578C) mutant KITs were predicted by in silico studies (computer-based molecular simulations), and compared with those obtained for known Imatinib sensitive and resistant KIT mutants. In parallel, biochemical analysis of the single and double KIT mutants expressed in mammalian cells was performed. Both the in-silico/in-vitro investigations showed constitutive activation and sensitivity to Imatinib of the yet mentioned Y578C mutation as well as of the double mutant, providing evidence that the concomitant presence of the W557G and Y578C mutations does not affect Imatinib response compare to the single mutations, in line with what observed in Imatinib treated patient.

Selecting Tyrosine Kinase Inhibitors for Gastrointestinal Stromal Tumor with Secondary KIT Activation-Loop Domain Mutations

PLoS ONE, 2013

Advanced gastrointestinal stromal tumors (GIST), a KIT oncogene-driven tumor, on imatinib mesylate (IM) treatment may develop secondary KIT mutations to confer IM-resistant phenotype. Second-line sunitinib malate (SU) therapy is largely ineffective for IM-resistant GISTs with secondary exon 17 (activation-loop domain) mutations. We established an in vitro cellbased platform consisting of a series of COS-1 cells expressing KIT cDNA constructs encoding common primary6secondary mutations observed in GISTs, to compare the activity of several commercially available tyrosine kinase inhibitors on inhibiting the phosphorylation of mutant KIT proteins at their clinically achievable plasma steady-state concentration (Css). The inhibitory efficacies on KIT exon 11/17 mutants were further validated by growth inhibition assay on GIST48 cells, and underlying molecular-structure mechanisms were investigated by molecular modeling. Our results showed that SU more effectively inhibited mutant KIT with secondary exon 13 or 14 mutations than those with secondary exon 17 mutations, as clinically indicated. On contrary, at individual Css, nilotinib and sorafenib more profoundly inhibited the phosphorylation of KIT with secondary exon 17 mutations and the growth of GIST48 cells than IM, SU, and dasatinib. Molecular modeling analysis showed fragment deletion of exon 11 and point mutation on exon 17 would lead to a shift of KIT conformational equilibrium toward active form, for which nilotinib and sorafenib bound more stably than IM and SU. In current preclinical study, nilotinib and sorafenib are more active in IM-resistant GISTs with secondary exon 17 mutation than SU that deserve further clinical investigation.

Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth

Proceedings of the National Academy of Sciences, 2013

Gastrointestinal stromal tumor (GIST) is the most common sarcoma of the gastrointestinal tract and arises from the interstitial cells of Cajal. It is characterized by expression of the receptor tyrosine kinase CD117 (KIT). In 70–80% of GIST cases, oncogenic mutations in KIT are present, leading to constitutive activation of the receptor, which drives the proliferation of these tumors. Treatment of GIST with imatinib, a small-molecule tyrosine kinase inhibitor, inhibits KIT-mediated signaling and initially results in disease control in 70–85% of patients with KIT-positive GIST. However, the vast majority of patients eventually develop resistance to imatinib treatment, leading to disease progression and posing a significant challenge in the clinical management of these tumors. Here, we show that an anti-KIT monoclonal antibody (mAb), SR1, is able to slow the growth of three human GIST cell lines in vitro. Importantly, these reductions in cell growth were equivalent between imatinib-re...

KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients

Proceedings of the National Academy of Sciences, 2009

Most gastrointestinal stromal tumors (GISTs) exhibit aberrant activation of the receptor tyrosine kinase (RTK) KIT. The efficacy of the inhibitors imatinib mesylate and sunitinib malate in GIST patients has been linked to their inhibition of these mutant KIT proteins. However, patients on imatinib can acquire secondary KIT mutations that render the protein insensitive to the inhibitor. Sunitinib has shown efficacy against certain imatinib-resistant mutants, although a subset that resides in the activation loop, including D816H/V, remains resistant. Biochemical and structural studies were undertaken to determine the molecular basis of sunitinib resistance. Our results show that sunitinib targets the autoinhibited conformation of WT KIT and that the D816H mutant undergoes a shift in conformational equilibrium toward the active state. These findings provide a structural and enzymologic explanation for the resistance profile observed with the KIT inhibitors. Prospectively, they have implications for understanding oncogenic kinase mutants and for circumventing drug resistance.

Discovery of (E)-N1-(3-Fluorophenyl)-N3-(3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)malonamide (CHMFL-KIT-033) as a Novel c-KIT T670I Mutant Selective Kinase Inhibitor for Gastrointestinal Stromal Tumors (GISTs)

Journal of Medicinal Chemistry, 2019

Gain-of-function mutations of c-KIT kinase play crucial pathological roles for the GISTs. Despite of the success of imatinib as the first line treatment of GISTs, dozens of drug-acquired resistant mutations emerge and c-KIT T670I is one of the most common mutants among them. Although several kinase inhibitors are capable of overcoming the T670I mutant, none of them can achieve the selectivity over the c-KIT wt which also plays important roles in a variety of physiological functions such as hematopoiesis. Starting from axitinib, through fragment hybrid type II kinase inhibitor design approach, we have discovered a novel inhibitor 24, which not only exhibits potent activity to c-KIT T670I mutant but also achieves 12-fold selectivity over c-KIT wt. Compound 24 displays good antiproliferative effects against c-KIT T670I mutant driven GISTs cell lines (GIST-T1/T670I and GIST-5R), and also exhibits suitable in vivo PK profiles as well as dose-dependent antitumor efficacy. This study provides a proof-of-concept for developing c-KIT mutant selective inhibitor which theoretically can render better therapeutic window.

Sorafenib Inhibits the Imatinib-Resistant KITT670I Gatekeeper Mutation in Gastrointestinal Stromal Tumor

Clinical Cancer Research, 2007

Purpose: Resistance is commonly acquired in patients with metastatic gastrointestinal stromal tumor who are treated with imatinib mesylate, often due to the development of secondary mutations in the KIT kinase domain. We sought to investigate the efficacy of second-line tyrosine kinase inhibitors, such as sorafenib, dasatinib, and nilotinib, against the commonly observed imatinib-resistant KIT mutations (KIT V654A , KIT T670I , KIT D820Y , and KIT N822K ) expressed in the Ba/F3 cellular system. Experimental Design: In vitro drug screening of stable Ba/F3 KIT mutants recapitulating the genotype of imatinib-resistant patients harboring primary and secondary KIT mutations was investigated. Comparison was made to imatinib-sensitive Ba/F3 KIT mutant cells as well as Ba/F3 cells expressing only secondary KIT mutations. The efficacy of drug treatment was evaluated by proliferation and apoptosis assays, in addition to biochemical inhibition of KITactivation. Results: Sorafenib was potent against all imatinib-resistant Ba/F3 KIT double mutants tested, including the gatekeeper secondary mutation KIT WK557-8del/T670I , which was resistant to other kinase inhibitors. Although all three drugs tested decreased cell proliferation and inhibited KIT activation against exon 13 (KIT V560del/V654A ) and exon 17 (KIT V559D/D820Y ) double mutants, nilotinib did so at lower concentrations. Conclusions: Our results emphasize the need for tailored salvage therapy in imatinib-refractory gastrointestinal stromal tumors according to individual molecular mechanisms of resistance. The Ba/F3 KIT WK557-8del/T670I cells were sensitive only to sorafenib inhibition, whereas nilotinib was more potent on imatinib-resistant KIT V560del/V654A and KIT V559D/D820Y mutant cells than dasatinib and sorafenib.