Fisetin a 3, 7, 3, 4-Tetrahydroxyflavone Inhibits PI3K/Akt/mTOR and MAPK Pathways and Ameliorates Psoriasis Pathology in 2D and 3D Organotypic Human Inflammatory Skin Models (original) (raw)
Related papers
Bioorganic Chemistry, 2021
Due to hurdles, including resistance, adverse effects, and poor bioavailability, among others linked with existing therapies, there is an urgent unmet need to devise new, safe, and more effective treatment modalities for skin cancers. Herein, a series of flavonol-based derivatives of fisetin, a plant-based flavonoid identified as an anti-tumorigenic agent targeting the mammalian targets of rapamycin (mTOR)-regulated pathways, were synthesized and fully characterized. New potential inhibitors of receptor tyrosine kinases (c-KITs), cyclin-dependent kinase-2 (CDK2), and mTOR, representing attractive therapeutic targets for melanoma and non-melanoma skin cancers (NMSCs) treatment, were identified using inverse-docking, in vitro kinase activity and various cell-based anticancer screening assays. Eleven compounds exhibited significant inhibitory activities greater than the parent molecule against four human skin cancer cell lines, including melanoma (A375 and SK-Mel-28) and NMSCs (A431 and UWBCC1), with IC 50 values ranging from 0.12 to < 15 μM. Seven compounds were identified as potentially potent single, dual or multi-kinase c-KITs, CDK2, and mTOR kinase inhibitors after inverse-docking and screening against twelve known cancer targets, followed by kinase activity profiling. Moreover, the potent compound F20, and the multi-kinase F9 and F17 targeted compounds, markedly decreased scratch wound closure, colony formation, and heightened expression levels of key cancer-promoting pathway molecular targets c-Kit, CDK2, and mTOR. In addition, these compounds downregulated Bcl-2 levels and upregulate Bax and cleaved caspase-3/7/8 and PARP levels, thus inducing apoptosis of A375 and A431 cells in a dose-dependent manner. Overall, compounds F20, F9 and F17, were identified as promising c-Kit, CDK2 and mTOR inhibitors, worthy of further investigation as therapeutics, or as adjuvants to standard therapies for the control of melanoma and NMSCs.
International Journal of Molecular Sciences
Natural products or herbs can be used as an effective therapy for treating psoriasis, an autoimmune skin disease that involves keratinocyte overproliferation. It has been demonstrated that phytomedicine, which is used for psoriasis patients, provides some advantages, including natural sources, a lower risk of adverse effects, and the avoidance of dissatisfaction with conventional therapy. The herbal products’ structural diversity and multiple mechanisms of action have enabled the synergistic activity to mitigate psoriasis. In recent years, the concept of using natural products as antiproliferative agents in psoriasis treatment has attracted increasing attention in basic and clinical investigations. This review highlights the development of an apoptotic or antiproliferatic strategy for natural-product management in the treatment of psoriasis. We systematically introduce the concepts and molecular mechanisms of keratinocyte-proliferation inhibition by crude extracts or natural compoun...
Fisetin: A Dietary Antioxidant for Health Promotion
Antioxidants & Redox Signaling, 2013
Significance: Diet-derived antioxidants are now being increasingly investigated for their health-promoting effects, including their role in the chemoprevention of cancer. In general, botanical antioxidants have received much attention, as they can be consumed for longer periods of time without any adverse effects. Flavonoids are a broadly distributed class of plant pigments that are regularly consumed in the human diet due to their abundance. One such flavonoid, fisetin (3,3¢,4¢,7-tetrahydroxyflavone), is found in various fruits and vegetables, such as strawberry, apple, persimmon, grape, onion, and cucumber. Recent Advances: Several studies have demonstrated the effects of fisetin against numerous diseases. It is reported to have neurotrophic, anticarcinogenic, anti-inflammatory, and other health beneficial effects. Critical Issues: Although fisetin has been reported as an anticarcinogenic agent, further in-depth in vitro and in vivo studies are required to delineate the mechanistic basis of its observed effects. In this review article, we describe the multiple effects of fisetin with special emphasis on its anticancer activity as investigated in cell culture and animal models. Future Directions: Additional research focused toward the identification of molecular targets could lead to the development of fisetin as a chemopreventive/chemotherapeutic agent against cancer and other diseases. Antioxid. Redox Signal. 19, 151-162.
Dermatologic Therapy, 2019
The aim of this study is to review the efficacy of herbal and allopathic drugs used to manage and treat psoriasis. Methods: The review has been compiled using reference materials from major databases, Online Journals, Science Direct, Scopus, Open J Gate, Google Scholar and PubMed. Key Findings: Psoriasis is a common skin disease affecting 2-3% of the world's population. It is cosmetically debilitating and chronic disease which occurs both in developing and developed countries. It can affect any part of the body, but the most common sites are the elbows, knees, and scalp. It is usually treated with synthetic medicine either given systematically or applied locally. The prescribed synthetic medicines used for the treatment of psoriasis are associated with severe side effects and complications, thus researchers around the world are trying to explore new, more effective, and safer drugs from natural resources. Conclusion: Medicinal plants are safe and efficacious and most of the people all over the world rely on herbal medicine due to their easy availability, low cost and efficacy for treating psoriasis. A number of medicinal plants having therapeutic potential with high efficacy used in the treatment of psoriasis have been described. Moreover, studies should be conducted to isolate and investigate the mechanism of actions of phytochemicals responsible for anti-psoriasis potential.
International Journal of Molecular Sciences, 2022
Background: Fisetin, a flavonol profusely found in vegetables and fruits, exhibited a myriad of properties in preclinical studies to impede cancer growth. Purpose: This study was proposed to delineate molecular mechanisms through analysing the modulated expression of various molecular targets in HeLa cells involved in proliferation, apoptosis and inflammation. Methods: MTT assay, flow cytometry, nuclear morphology, DNA fragmentation and Annexin–Pi were performed to evaluate the anti-cancer potential of fisetin. Furthermore, qPCR and proteome profiler were performed to analyse the expression of variety of gene related to cell death, cell proliferation, oxidative stress and inflammation and cancer pathways. Results: Fisetin demonstrated apoptotic inducing ability in HeLa cells, which was quite evident through nuclear morphology, DNA ladder pattern, decreased TMRE fluorescent intensity, cell cycle arrest at G2/M and increased early and late apoptosis. Furthermore, fisetin treatment mod...
Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
Life sciences, 2017
A wide variety of chronic diseases, such as neurodegenerative and cardiovascular disorders, diabetes mellitus, osteoarthtitis, obesity and various cancers, are now being treated with cost effective phytomedicines. Since synthetic medicines are very expensive, concerted efforts are being made in developing and poor countries to discover cost effective medicines for the treatment of non-communicable diseases (NCDs). Understanding the underlying mechanisms of bioactive medicines from natural sources would not only open incipient avenues for the scientific community and pharmaceutical industry to discover new drug molecules for the therapy of NCDs, but also help to garner knowledge for alternative therapeutic approaches for the management of chronic diseases. Fisetin is a polyphenolic molecule of flavonoids class, and belongs to the bioactive phytochemicals that have potential to block multiple signaling pathways associated with NCDs such as cell division, angiogenesis, metastasis, oxid...