Lifts of Twisted K3 Surfaces to Characteristic 0 (original) (raw)

Abstract

Deligne [9] showed that every K3 surface over an algebraically closed field of positive characteristic admits a lift to characteristic 0. We show the same is true for a twisted K3 surface. To do this, we study the versal deformation spaces of twisted K3 surfaces, which are particularly interesting when the characteristic divides the order of the Brauer class. We also give an algebraic construction of certain moduli spaces of twisted K3 surfaces over Spec Z and apply our deformation theory to study their geometry. As an application of our results, we show that every derived equivalence between twisted K3 surfaces in positive characteristic is orientation preserving.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (36)

  1. M. Artin and B. Mazur. Formal groups arising from algebraic varieties. Ann. Sci. École Norm. Sup. (4), 10(1):87-131, 1977.
  2. Michael Artin. Supersingular K3 surfaces. Ann. Sci. École Norm. Sup. (4), 7:543-567 (1975), 1974.
  3. Daniel Bragg. Derived equivalences of twisted supersingular K3 surfaces. Adv. Math., 378:107498, 45, 2021.
  4. Daniel Bragg and Max Lieblich. Twistor spaces for supersingular K3 surfaces. arXiv e-prints, page arXiv:1804.07282, Apr 2018.
  5. Daniel Bragg and Martin Olsson. Representability of cohomology of finite flat abelian group schemes, 2021.
  6. Emma Brakkee. Moduli spaces of twisted K3 surfaces and cubic fourfolds. Math. Ann., 377(3- 4):1453-1479, 2020.
  7. A. J. de Jong. The period-index problem for the Brauer group of an algebraic surface. Duke Math. J., 123(1):71-94, 2004.
  8. P. Deligne. Cohomologie étale, volume 569 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1977. Séminaire de géométrie algébrique du Bois-Marie SGA 4 1 2 .
  9. P. Deligne. Relèvement des surfaces K3 en caractéristique nulle. In Algebraic surfaces (Orsay, 1976-78), volume 868 of Lecture Notes in Math., pages 58-79. Springer, Berlin-New York, 1981. Prepared for publication by Luc Illusie.
  10. Alexander Grothendieck. Le groupe de Brauer. III. Exemples et compléments. In Dix exposés sur la cohomologie des schémas, volume 3 of Adv. Stud. Pure Math., pages 88-188. North-Holland, Amsterdam, 1968.
  11. Jack Hall. Openness of versality via coherent functors. J. Reine Angew. Math., 722:137-182, 2017.
  12. Robin Hartshorne. Deformation theory, volume 257 of Graduate Texts in Mathematics. Springer, New York, 2010.
  13. Daniel Huybrechts. Fourier-Mukai transforms in algebraic geometry. Oxford Mathematical Mono- graphs. The Clarendon Press, Oxford University Press, Oxford, 2006.
  14. Daniel Huybrechts. Lectures on K3 surfaces, volume 158 of Cambridge Studies in Advanced Math- ematics. Cambridge University Press, Cambridge, 2016.
  15. Daniel Huybrechts, Emanuele Macrì, and Paolo Stellari. Derived equivalences of K3 surfaces and orientation. Duke Math. J., 149(3):461-507, 2009.
  16. Luc Illusie. Complexe cotangent et déformations. II. Lecture Notes in Mathematics, Vol. 283. Springer-Verlag, Berlin-New York, 1972.
  17. Luc Illusie. Cotangent complex and deformations of torsors and group schemes. In Toposes, al- gebraic geometry and logic (Conf., Dalhousie Univ., Halifax, N.S., 1971), pages 159-189. Lecture Notes in Math., Vol. 274. 1972.
  18. Luc Illusie. Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. (4), 12(4):501-661, 1979.
  19. William E. Lang and Niels O. Nygaard. A short proof of the Rudakov-Šafarevič theorem. Math. Ann., 251(2):171-173, 1980.
  20. Max Lieblich. Twisted sheaves and the period-index problem. Compos. Math., 144(1):1-31, 2008.
  21. Max Lieblich. Moduli of twisted orbifold sheaves. Adv. Math., 226(5):4145-4182, 2011.
  22. Max Lieblich and Davesh Maulik. A note on the cone conjecture for K3 surfaces in positive characteristic. Math. Res. Lett., 25(6):1879-1891, 2018.
  23. Max Lieblich and Martin Olsson. Fourier-Mukai partners of K3 surfaces in positive characteristic. Ann. Sci. Éc. Norm. Supér. (4), 48(5):1001-1033, 2015.
  24. N. O. Nygaard. The Tate conjecture for ordinary K3 surfaces over finite fields. Invent. Math., 74(2):213-237, 1983.
  25. Niels O. Nygaard. A p-adic proof of the nonexistence of vector fields on K3 surfaces. Ann. of Math. (2), 110(3):515-528, 1979.
  26. Niels O. Nygaard. Higher de Rham-Witt complexes of supersingular K3 surfaces. Compositio Math., 42(2):245-271, 1980/81.
  27. Arthur Ogus. Supersingular K3 crystals. In Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II, volume 64 of Astérisque, pages 3-86. Soc. Math. France, Paris, 1979.
  28. Arthur Ogus. Singularities of the height strata in the moduli of K3 surfaces. In Moduli of abelian varieties (Texel Island, 1999), volume 195 of Progr. Math., pages 325-343. Birkhäuser, Basel, 2001.
  29. Martin Olsson. Algebraic spaces and stacks, volume 62 of American Mathematical Society Collo- quium Publications. American Mathematical Society, Providence, RI, 2016.
  30. Martin C. Olsson. Hom-stacks and restriction of scalars. Duke Math. J., 134(1):139-164, 2006.
  31. Emanuel Reinecke. Autoequivalences of twisted K3 surfaces. Compos. Math., 155(5):912-937, 2019.
  32. Jordan Rizov. Moduli stacks of polarized K3 surfaces in mixed characteristic. Serdica Math. J., 32(2-3):131-178, 2006.
  33. A. N. Rudakov and I. R. Shafarevich. Surfaces of type K3 over fields of finite characteristic. In Current problems in mathematics, Vol. 18, pages 115-207. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981.
  34. Michael Schlessinger. Functors of Artin rings. Trans. Amer. Math. Soc., 130:208-222, 1968.
  35. The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2017.
  36. G. van der Geer and T. Katsura. On a stratification of the moduli of K3 surfaces. J. Eur. Math. Soc. (JEMS), 2(3):259-290, 2000.