Magnetic field induced anomalous distribution of particles (original) (raw)

It seems that a stochastic system must be a nonlinear one to observe the phenomenon, noise induced transition. But in the present paper, we have demonstrated that the phenomenon may be observed even in a linear stochastic process where both deterministic and stochastic parts are linear functions of the relevant phase space variables. The shape of the stationary distribution of particles (which are confined in a harmonic potential) may change on increasing the strength of the applied fluctuating magnetic field. The probability density may vary non monotonically with an increase in the coordinate of a Brownian particle. Thus the distribution of particles may deviate strongly from the Boltzmann one and it is a unique signature of the fluctuating magnetic field. Then we are motivated strongly to study the distribution of particles in a nonlinear stochastic system where the Brownian particles are confined in a bi-stable potential energy field in the presence of the fluctuating magnetic f...