Molecular Characterization of Tetracycline-Resistant Genes and Integrons from Avirulent Strains of Escherichia coli Isolated from Catfish (original) (raw)
Foodborne Pathogens and Disease, 2009
Abstract
A study was undertaken to investigate the occurrence of tetracycline-resistant genes and to characterize the integrons present in Escherichia coli isolated from catfish. Sixty-three tetracycline-resistant E. coli strains were isolated from the intestinal contents of 407 farm-raised catfish. All strains were resistant to multiple antibiotics. A polymerase chain reaction (PCR) assay detected tetA in the DNA of 15 of 63 (25.0%) isolates by amplifying a PCR amplicon measuring 957 bp. Oligonucleotide primers targeting a 436-bp region of tetB successfully amplified a PCR amplicon from 47 of 63 (77.0%) isolates, indicating that tetB was predominant. Oligonucleotide primers specific for tetC amplified a 589-bp PCR amplicon from 3 of 63 (5%) isolates. Eleven (17.0%) of the isolates contained both tetA and tetB genes. Class I integrons amplified from the genomic DNA of 14 of 63 (22.0%) isolates measured 1.6 and 1.8 kb. Sequence analysis of the 1.6 kb integrons indicated the presence of three different gene cassettes: a dfrA12, conferring resistance to trimethoprim; an open reading frame, orfF, a hypothetical protein of unknown function; and aadA2, conferring resistance to aminoglycosides. Sequence analysis of the 1.8-kb integron indicated the presence of dfrA17 and aadA5. PCR assays for the detection of the six predominant virulence genes failed to amplify any genes from the genomic DNA. Pulsed-field gel electrophoresis using XbaI identified 16 distinct macro restriction patterns among the 63 isolates. The dendrogram analysis indicated that the DNA from 4 of 16 isolates had a similarity index of 90.0%. Our results indicate that the use of oxytetracycline and Romet 30 (sulfadimethoxine and ormetoprim) in farm-raised catfish may select for multiple antibiotic-resistant E. coli that could serve as a reservoir of tetracycline, trimethoprim, and aminoglycoside resistance genes.
kidon sung hasn't uploaded this paper.
Let kidon know you want this paper to be uploaded.
Ask for this paper to be uploaded.