Techno-economic analysis of a central receiver power plant with different levels of storage capacity and hybridization (original) (raw)
Related papers
Integration of energy storage with hybrid solar power plants
Energy Procedia, 2018
Concentrated solar power (CSP) and photovoltaics (PV) systems integrated with energy storage have large potential to provide cost-competitive and baseload renewable energy. On the one hand, CSP with thermal energy storage (TES) is an affordable and dispatchable option. On the other hand, Electrical Energy Storage (EES) gives dispatchability to PV systems but at high costs due to current prices of EES systems, however an extreme reduction in EES costs is expected. Therefore, there could be a tipping point at which PV + EES becomes the best technology to provide dispatchable power. Here, we explore different scenarios, representing snapshots of technology investment costs according to published projections, in order to identify the dominant technology in a hybrid solar power plant that provides sustainable and dispatchable energy by 2050. The study uses our two-stage multi-objective optimisation framework, in order to optimise the design and operation of a hybrid power plant with energy storage. We found that nowadays CSP with TES is the most affordable technology, but a shift to PV with EES is expected mainly due to the large reduction in the cost of both PV and EES systems. Thus, the presented optimisation analysis can improve the strategies for the design of an effective and economic pathway to decarbonise the power sector.
Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant
Energies, 2018
A method is presented to enhance solar penetration of a hybrid solar-combined cycle power plant integrated with a packed-bed thermal energy storage system. The hybrid plant is modeled using Simulink and employs systems-level automation. Feedback control regulates net power, collector temperature, and turbine firing temperature. A base-case plant is presented, and plant design is systematically modified to improve solar energy utilization. A novel recycling configuration enables robust control of collector temperature and net power during times of high solar activity. Recycling allows for improved solar energy utilization and a yearly solar fraction over 30%, while maintaining power control. During significant solar activity, excessive collector temperature and power setpoint mismatch are still observed with the proposed recycling configuration. A storage bypass is integrated with recycling, to lower storage charging rate. This operation results in diverting only a fraction of air fl...
Energy, 2018
This work presents a thermo-economic simulation model of a hybrid renewable power plant based on wind turbine and photovoltaic technologies, coupled to an energy storage system. The total plant capacity is 200 kW (190 kW and 10 kW, for photovoltaic and wind turbine, respectively), whereas the energy storage capacity is 400 kWh. Aim of this work is to design a renewable power plant showing limited fluctuations (with respect to the ones typically achieved in case of solar systems) with marginal amounts of electricity purchased or sold to the grid, maximizing the electricity selfconsumption. The thermo-economic model, developed in TRNSYS environment, allows one to determine the best system configuration and maximize the economic profitability by considering the time-dependent tariffs applied to the electricity exchanged with the grid and the possibility to store electricity. Different system layouts with or without the storage system and for different users are considered. Results show negative profit indexes of the layouts including the storage system (-0.27 in the worst case vs. 0.61 in the best case without the storage), due to its lower efficiency and its higher capital cost, although a remarkable reduction of the operating costs and an enhancing of the self-consumed energy.
Development of an Economical Model for a Hybrid System of Grid, PV and Energy Storage Systems
— Major concerns associated with renewable energy resources are uncertainty and unpredictability. Energy Storage Systems (ESSs) can help create more reliable and dispatchable systems by adjusting charging and discharging time and rate. In this study, an economic model is developed for a hybrid system of grid-connected solar photovoltaic (PV), Compressed Air Energy Storage (CAES), and batteries. PV generation depends on solar irradiance. CAES can store energy in large amounts and for longer periods and at lower cost than other storage systems. Batteries are integrated with CAES in the developed model mainly to operate for lower demand and shorter periods. Optimal planning for generation and storage is derived based on the developed model for each day using Dynamic Programming (DP) or simulation methods. The original non-linear model of the system is converted to a linear model in this study. The results of the model are different for each period and are highly dependent on the load demand.
Size and Cost Optimization of a Renewable Energy Hybrid System
2017
In this paper sun oriented photovoltaic, Fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy Centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23° 12' N latitude and 77°24'E longitude. In this framework, essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while Fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result it is found that the cost of energy (COE) of a biomass gasifier genera...
ASME 2013 7th International Conference on Energy Sustainability, 2013
Integrating a thermal energy storage (TES) in a concentrating solar power (CSP) plant allows for continuous operation even during times when solar radiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an encapsulated phase change material thermocline storage system are integrated with a CSP power tower system model to investigate its dynamic performance. The influence of design parameters of the storage system is studied for different solar multiples of the plant to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip exergetic efficiency greater than 95% and storage cost less than $15/kWht for a minimum discharge period of 6 hours. From the design windows, optimum designs of the storage system based on minimum LCOE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank mol...
Optimal Operation of Solar Tower Plants with Thermal Storage for System Design
Proceedings of the 19th IFAC World Congress, 2014
Concentrated Solar Power CSP plants are increasingly being considered for construction worldwide, in order to meet the demand for renewable power generation. The most promising technology considered today employs a central receiver, illuminated by a heliostat field, using molten salts as working fluid. A distinctive feature of these plant is the possibility of thermal energy storage, providing 15 or more hours of full power operation without solar irradiation. The state-of-the-art SAM software is often use for sizing the plant and evaluating the return on investment, assuming a straightforward and shortsighted control strategy. In this paper, a model similar to that used by SAM is developed and then used to demonstrate the potential advantages of optimal control, in a context of variable tariffs with higher prices during peak hours. The modelling and optimization problems are formulated with the high-level Modelica and Optimica languages, which allows to solve the problem with minimal effort. This paper is a first step to promote the use of optimal control techniques and high-level modelling languages for the correct evaluation of the potential performance of CSP plants with thermal storage during their design phase.
Technology audit and production reserves, 2024
The object of research is heat transfer in a hybrid thermal photovoltaic solar collector. International agreements and strategies aimed at combating climate change and reducing greenhouse gas emissions strongly call for the active implementation of renewable energy sources on a global scale. A special emphasis is placed on the development of solar energy, which has significant growth potential due to the constant improvement of technologies and cost reduction of production. With this in mind, the authors focused on the development and analysis of a computer model of an innovative hybrid system that effectively combines a solar collector for the simultaneous production of both thermal and electrical energy. The research included a detailed study of the temperature changes of the heat carrier in the hybrid photovoltaic solar collector and thermal accumulator during the period of solar irradiation. Thanks to careful monitoring, the main patterns of gradual temperature increase in both key components of the hybrid system were established. In addition, an assessment of the dynamics of changes in the instantaneous thermal power of the solar collector under the influence of various factors, such as the intensity of solar radiation, the angle of inclination of the collector, wind speed, etc., was carried out. The results of computer modeling showed the average indicator of the efficiency of the entire hybrid system, as well as its variations during a certain time of operation. In addition, the change in the instantaneous specific heat capacity and the overall efficiency of heat energy generation by the hybrid photovoltaic solar collector were analyzed. Special attention was paid to the study of the dynamics of changes in the thermal efficiency of the entire system, as well as its ability to efficiently store thermal energy in a specialized battery. The comprehensive analysis made it possible to obtain the key thermophysical parameters of the developed hybrid system with a photovoltaic solar collector. This data is extremely important, as it will allow engineers and scientists to accurately calculate the potential performance and efficiency of such a system when it is put into practical use in the future. In general, the results of the study emphasize the promising development of hybrid solar collectors as one of the leading technologies in the field of renewable energy in the context of global challenges of climate change.
Hybrid Power Plant with Storage System: University Research Station
Periodica Polytechnica Electrical Engineering and Computer Science, 2019
The article presents a brief overview of renewable energy sources, microgrids and energy storage problems. The construction and utilisation of university research station to study the operation of a hybrid power plant with an energy storage unit has been described. The tested hybrid power plant consists of a photovoltaic panel and a wind turbine. There are two possible areas of research, one is when the microgrid is connected to the main grid and second when it functions independently as a stand-alone setup. In addition, the model allows to study the characteristics of photovoltaic cells, examine the dependence of generated power on the time, season and angle of the solar panel. In this article, the current-voltage characteristics and influence of solar azimuth angle on cell power, dependence of wind on power generated by the wind turbine, and study of off-grid work of power plant are presented.