The moderating role of social themes in cause-related marketing advertisements (original) (raw)
Related papers
Floral Synomone of a Wild Orchid, Bulbophyllum cheiri , Lures Bactrocera Fruit Flies for Pollination
Journal of Chemical Ecology, 2002
The major fruit fly attractant component in the floral fragrance of Bulbophyllum cheiri (fruit fly orchid) is methyl eugenol (ME). In the lowland rain forest of Malaysia, the solitary and nonresupinate flowers of the fruit fly orchid attract only males of the ME-sensitive fruit fly species (Bactrocera carambolae, B. papayae, and B. umbrosa. During the morning, the fruit fly orchid flower is visited by many fruit flies, which can sometimes cover the whole flower. The number of visitors dwindles in the afternoon. Headspace analysis of the flower shows a high ME peak in the morning, a small one between 12:00 and 14:00 hr, and no detectable ME peak after 14:00 hr. The process of pollination in the wild is initiated by attraction of fruit flies to floral ME. The flower, with the aid of its specialized hinged see-saw lip (labellum), temporarily traps (B. papayae males (caught on and near the fruit fly orchid flower) are identical in morphology and structure with those obtained from the flower. Many of the B. papayae males (17 of 22 analyzed) attracted to the fruit fly orchid already possessed both ME metabolites, trans-coniferyl alcohol and 2-allyl-4,5-dimethoxyphenol, in their rectal glands, indicating that they had previously consumed ME. In this orchid–fruit fly association, both organisms gain direct reproductive benefits: the orchid flower gets pollinated without having to offer nectar, while the fruit fly boosts its pheromone and defense system, as well as its sexual competitiveness by feeding on the ME produced by the flower.
Journal of Chemical Ecology, 2000
The solitary flower of Bulbophyllum patens selectively attracts male fruit flies of several Bactrocera species with a specific fragrance in the rain forest of Malaysia. It temporarily traps flies between its hinged see-saw lip and column for pollination. The attractant component is zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone], a pungent essence of ginger. Zingerone has a structure resembling two major fruit fly attractants (methyl eugenol and raspberry ketone) and shows potency to attract a wide range of fruit fly species (B. carambolae, B. caudata, B. cucurbitae, B. tau, and B. umbrosa). A fruit fly visitor is rewarded by feeding on zingerone, and in return it removes the pollinarium and then transfers it to another flower. Males of the melon fly acquire the floral essence and selectively store it in the pheromone gland to attract conspecific females. Males of B. papayae, however, convert zingerone to zingerol in the crop. The latter compound is stored in the rectal gland and subsequently released to attract females. This provides a rare example of a mutualistic interaction between insects and plants via a floral synomone, in which both organisms obtain advantages directly benefiting their reproductive systems.
Journal of Chemical Ecology, 2006
It is widely believed that most orchid flowers attract insects by using deception or chemical rewards in the form of nectar. Flowers of Bulbophyllum vinaceum produce a large array of phenylpropanoids that lure tephritid fruit fly males and also act as floral reward, which the flies subsequently convert to pheromone components. The major floral volatile components identified are methyl eugenol (ME), trans-coniferyl alcohol (CF), 2-allyl-4,5-dimethoxphenol (DMP), and trans-3,4-dimethoxycinnamyl acetate, whereas the minor components are eugenol, euasarone, trans-3,4-dimethoxy cinnamyl alcohol, and cis-coniferyl alcohol. Among the various floral parts, the lip (which is held in a closed position up against the sexual organs) has the highest concentration of the major compounds. An attracted male fly normally lands on one of the petals before climbing up onto and forcing the “spring loaded” floral lip into the open position, hence exposing the floral sexual organs. The architecture and location of chemical attractants of the lip compel the fly to align itself along the lip’s longitudinal axis in a precise manner. As the fly laps up the compounds and moves towards the base of the lip, it passes the point of imbalance causing the lip to spring back to its normal closed position. The fly is catapulted headfirst into the column cavity, and its dorsum strikes the protruding sticky base of the hamulus and adheres to it. The momentum of the fly and the structural morphology of the long stiff hamulus act to pry out the pollinia from its anther cover. Hence, the pollinarium (pollinia + hamulus) is detached from the flower and adhered to the fly’s dorsum. In this unique mutualistic association, both species receive direct reproductive benefits—the flower’s pollinarium is transported for cross pollination, and the fly is offered a bouquet of phenylpropanoids (synomone) that it consumes, converts, and/or sequesters as sex pheromonal components, thus enhancing sexual attraction and mating success.
Deceptive strategy in Dactylorhiza orchids: multidirectional evolution of floral chemistry
Annals of Botany, 2019
Background and Aims The deception strategies of orchids remain poorly understood, especially in regard to the chemical compounds emitted from their flowers and their interaction with various taxonomic groups of pollinators. We investigated the phylogenetic relationships and compared the variation of floral chemical compounds between food-deceptive Dactylorhiza taxa (D. incarnata var. incarnata and D. incarnata var. ochroleuca, D. fuchsii and D. majalis) from populations in northeastern Poland. We propose a model of the evolution of deception based on floral chemical signals in this genus. • Methods A Bayesian approach based on polymorphic plastid DNA (trnL, trnF and psbC-trnK), internal transcribed spacer (ITS) sequences and flow cytometry data was applied to confirm the taxonomic status of the studied orchids. We also identified and classified the pollinators and flower visitors in each Dactylorhiza population to the taxonomic level and compared our results with literature data. The chemical composition of pentane and diethyl ether extracts from the flowers was analysed by gas chromatography-mass spectrometry. Variation of the floral chemical components was visualized by non-metric multidimensional scaling based on Bray-Curtis dissimilarity. • Key Results The genetic distinctiveness of D. incarnata, D. fuchsii and D. majalis was confirmed. No hybrids between them were found, but the chloroplast DNA (cpDNA), ITS haplotypes and flow cytometry showed genetic similarity between D. incarnata var. incarnata and D. incarnata var. ochroleuca. We determined that Apis mellifera (Hymenoptera) was the only shared pollinator of these taxa. Strangalia attenuata and Alosterna tabacicolor (Coleoptera) and Volucella pellucens and V. bombylans (Hymenoptera) were observed pollinating D. fuchsii. Visualization of the emission rates of the 61 floral chemical compounds detected from pentane extracts (mainly hydrocarbons and aldehydes) and the 51 from diethyl extracts (with abundant groups of benzenoids and nonaromatic acids) strongly differentiated D. incarnata, D. fuchsii and D. majalis, while those of the two varieties of D. incarnata (var. incarnata and var. ochroleuca) were almost identical. • Conclusions While the genetic data clearly supported the distinct lineages of D. incarnata, D. fuchsii and D. majalis, the patterns of emission of their flower chemical compounds were more complex within the series of shared compounds (alkanes and aldehydes) and taxon-specific compounds (benzenoids and esters). Their floral bouquet can influence the sexual, social and feeding behaviour of pollinators in different ways. We observed that the floral chemical compounds attracted both shared and species-specific pollinators to Dactylorhiza, confirming the multidirectional character of floral chemical signals in these food-deceptive taxa. Reduction of species-specific pollination levels in Dactylorhiza orchid taxa may promote hybridization between them.
South African Journal of Botany, 2010
Pollination systems in orchids tend to be specialized as a consequence of restrictive floral morphology and specific advertising signals. Here we document a notable exception: Disa fragrans subsp. fragrans, a taxon from the Drakensberg Mountains of South Africa, which is pollinated by insects belonging to at least four orders (flies, beetles, bees, and moths). Pollinaria of D. fragrans are attached to the feet of these visitors and pollination thus occurs in a rather haphazard fashion. Nevertheless, its pollination success and pollen transfer efficiency are comparable to those of its close relative, Disa sankeyi, which is pollinated by a single genus of wasps. D. fragrans has an exceptionally strong floral scent: volatile emission is 19-86 μg per inflorescence per hour, which is up to 100 fold greater than in D. sankeyi. The scent bouquet is comprised of at least 46 compounds, mostly benzenoids and phenylpropanoids, which are known to be general attractants to a wide range of insects. In contrast to D. sankeyi, the flowers of D. fragrans have a high level of spectral purity (chroma) as is typical of many generalist insect-pollinated plants. At a site where D. fragrans co-occurs with D. sankeyi we found a plant with intermediate characteristics that may be a hybrid between the two taxa. The novel case of generalist pollination in D. fragrans documented here serves as an example of how floral advertising traits might evolve during an evolutionary shift from specialized to generalized pollination.
Chemical ecology and pollinator-driven speciation in sexually deceptive orchids
Phytochemistry, 2011
Sexually deceptive orchids mimic females of their pollinator species to attract male insects for pollination. Pollination by sexual deception has independently evolved in European, Australian, South African, and South American orchid taxa. Reproductive isolation is mainly based on pre-mating isolation barriers, the specific attraction of males of a single pollinator species, mostly bees, by mimicking the female species-specific sex-pheromone. However, in rare cases post-mating barriers have been found. Sexually deceptive orchids are ideal candidates for studies of sympatric speciation, because key adaptive traits such as the pollinator-attracting scent are associated with their reproductive success and with pre-mating isolation. During the last two decades several investigations studied processes of ecological speciation in sexually deceptive orchids of Europe and Australia. Using various methods like behavioural experiments, chemical, electrophysiological, and population-genetic an...
Journal of Chemical Ecology, 2005
Bulbophyllum apertum flower (Orchidaceae) releases raspberry ketone (RK) in its fragrance, which attracts males of several fruit fly species belonging to the genus Bactrocera. Besides RK as a major component, the flower contains smaller amounts of 4-(4-hydroxylphenyl)-2-butanol, plus two minor volatile components, veratryl alcohol and vanillyl alcohol. Within the flower, the lip (labellum) had the highest concentration of RK with much smaller quantities present in petals; other flower parts had no detectable RK. Male fruit flies attracted to the flower belong to RK-sensitive species -such as Bactrocera albistragata, B. caudatus, B. cucurbitae (melon fly), and B. tau. Removal and attachment of the pollinarium to a fly's thoracic dorsum occurred when a male of B. albistragata was toppled into the floral column cavity, due to an imbalance caused by it shifting its body weight while feeding on the see-saw lip, and then freeing itself after being momentarily trapped between the lip and column. During this process, the stiff hamulus (the pollinia stalk protruding prominently towards the lip) acted as a crowbar when it was brushed downwards by the toppled fly and lifted the pollinia out of the anther. If the fly was big or long for the small triangular lip, it would not be toppled into the column cavity and would just walk across the column, during which time the pollinarium could be accidentally removed by the fly's leg, resulting in a failed transport of the pollinarium. This suggests an unstable situation, where the orchid relies only on a particular pollinator species in the complex ecosystem where many RKsensitive species inhabit. Wild males of B. caudatus (most common visitors) captured on Bulbophyllum apertum flowers were found to sequester RK in their bodies as a potential pheromonal and allomonal ingredient. Thus, RK can act either as a floral synomone (pollinarium transported) or kairomone (accidental 497 0098-0331/05/0300-0497/0 C 2005 Springer Science+Business Media, Inc.
Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals
Proceedings of The Royal Society B: Biological Sciences, 2003
Ophrys flowers mimic virgin females of their pollinators, and thereby attract males for pollination. Stimulated by scent, the males attempt to copulate with flower labella and thereby ensure pollination. Here, we show for the first time, to our knowledge, that pollinator attraction in sexually deceptive orchids may be based on a few specific chemical compounds. Ophrys speculum flowers produce many volatiles, including trace amounts of (w -1)-hydroxy and (w -1)-oxo acids, especially 9-hydroxydecanoic acid. These compounds, which are novel in plants, prove to be the major components of the female sex pheromone in the scoliid wasp Campsoscolia ciliata, and stimulate male copulatory behaviour in this pollinator species. The specificity of the signal depends primarily on the structure and enantiomeric composition of the oxygenated acids, which is the same in wasps and in the orchids. The overall composition of the blend differs significantly between the orchid and its pollinator and is of secondary importance. 9-Hydroxydecanoic acid is a rarely occurring compound that until now has been identified only in honeybees. Contrary to the standard hypothesis that Ophrys flowers produce only 'second-class attractivity compounds' and are neglected once the pollinator females are present, we show that flowers are more attractive to the males than are their own females.