A remark on entropy numbers (original) (raw)

Abstract

Talagrand's fundamental result on the entropy numbers is slightly improved. Our proof uses different ideas based on results from greedy approximation.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (23)

  1. J. Bourgain, J. Lindenstrauss, and V. Milman, Approximation of zonoids by zonotopes, Acta Math., 162 (1989), 73-141.
  2. J. Bourgain, A. Pajor, S.J. Szarek, N. Tomczak-Jaegermann, On the duality problem for entropy numbers of operators, In Geometric as- pects of functional analysis, 1989, 50-63, Springer, Berlin, Heidelberg.
  3. B. Carl, Entropy numbers, s-numbers, and eigenvalue problem, J. Func. Analysis, 41 (1981), 290-306.
  4. F. Dai, A. Prymak, V.N. Temlyakov, and S. Tikhonov, Integral norm discretization and related problems, Russ. Math. Surv., 74 (2019), 579-630. Translation from Uspekhi Mat. Nauk, 74, Is. 4(448) (2019), 3-58; arXiv:1807.01353v1 [math.NA] 3 Jul 2018.
  5. F. Dai, A. Prymak, A. Shadrin, V. Temlyakov, S. Tikhonov, Sam- pling discretization of integral norms, arXiv:2001.09320v1 [math.CA] 25 Jan 2020.
  6. F. Dai, A. Prymak, A. Shadrin, V. Temlyakov, and S. Tikhonov, Entropy numbers and Marcinkiewicz-type deiscretization theorems, arXiv:2001.10636v1 [math.CA] 28 Jan 2020.
  7. Ding Dũng, V.N. Temlyakov, and T. Ullrich, Hyperbolic Cross Ap- proximation, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2018; arXiv:1601.03978v2 [math.NA] 2 Dec 2016.
  8. M. Donahue, L. Gurvits, C. Darken, E. Sontag, Rate of convex ap- proximation in non-Hilbert spaces, Constr. Approx., 13 (1997), 187- 220.
  9. E. Gine and J. Zinn, Some limit theorems for empirical processes, Ann. Prob., 12 (1984), 929-989.
  10. A. Hinrichs, J. Prochno, and J. Vybiral, Entropy numbers of embed- dings of Schatten classes, J. Functional Analysis, 273 (2017), 3241- 3261; arXiv:1612.08105v1 [math.FA] 23 Dec 2016.
  11. S.V. Konyagin and V.N. Temlyakov, The entropy in learning theory. Error estimates, Constr. Approx., 25 (2007), 1-27.
  12. E. Kosov, The Marcinkiewicz-type discretization of L p -norms under the Nikolskii-type assumptions, arXiv:2005.01674v1 [math.FA] 4 May 2020.
  13. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer- Verlag, Berlin, 1979.
  14. G. Lorentz, M. von Golitschek, and Y. Makovoz, Constructive Ap- proximation: Advanced Problems. Springer, Berlin, 1996.
  15. A. Marcus, D.A. Spielman, and N. Srivastava, Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, Annals of Math., 182 (2015), 327-350.
  16. C. Schütt, Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory, 40 (1984), 121-128.
  17. M. Talagrand, Upper and lower bounds for stochastic processes: mod- ern methods and classical problems. -Springer Science and Business Media, 2014.
  18. V.N. Temlyakov, An inequality for the entropy numbers and its ap- plication, J. Approx. Theory, 173 (2013), 110-121.
  19. V.N. Temlyakov, Greedy Approximation, Cambridge University Press, 2011.
  20. V.N. Temlyakov, On the entropy numbers of the mixed smooth- ness function classes, J. Approx. Theory, 207 (2017), 26-56; arXiv:1602.08712v1 [math.NA] 28 Feb 2016.
  21. V.N. Temlyakov, The Marcinkewiecz-type discretization theorems for the hyperbolic cross polynomials, Jaen Journal on Approximation, 9 (2017), No. 1, 37-63; arXiv: 1702.01617v2 [math.NA] 26 May 2017.
  22. V.N. Temlyakov, The Marcinkiewicz-type discretization theorems, Constr. Approx. 48 (2018), 337-369; arXiv: 1703.03743v1 [math.NA] 10 Mar 2017.
  23. V. Temlyakov, Multivariate Approximation, Cambridge University Press, 2018.