The Cross-Sectional Intrinsic Entropy—A Comprehensive Stock Market Volatility Estimator (original) (raw)
To take into account the temporal dimension of uncertainty in stock markets, this paper introduces a cross-sectional estimation of stock market volatility based on the intrinsic entropy model. The proposed cross-sectional intrinsic entropy (CSIE) is defined and computed as a daily volatility estimate for the entire market, grounded on the daily traded prices—open, high, low, and close prices (OHLC)—along with the daily traded volume for all symbols listed on The New York Stock Exchange (NYSE) and The National Association of Securities Dealers Automated Quotations (NASDAQ). We perform a comparative analysis between the time series obtained from the CSIE and the historical volatility as provided by the estimators: close-to-close, Parkinson, Garman–Klass, Rogers–Satchell, Yang–Zhang, and intrinsic entropy (IE), defined and computed from historical OHLC daily prices of the Standard & Poor’s 500 index (S&P500), Dow Jones Industrial Average (DJIA), and the NASDAQ Composite index, respecti...
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact