The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor (original) (raw)
Related papers
The Journal of steroid biochemistry and molecular biology, 2014
Nucleocytoplasmic trafficking of the androgen receptor (AR) represents an essential step in androgen action. To determine whether the amino-terminal domain (NTD) contains potential nuclear import and/or export signals, deletion mutants of the NTD tagged with green fluorescent protein (GFP) were generated and tested for their intracellular localization in both AR-negative and AR-positive cell lines. Subcellular localization analysis suggested a role of the NTD in regulating AR subcellular localization and revealed that the region of a.a. 50-250 of the NTD of AR (AR 50-250 ) could promote cytoplasmic localization. Leptomycin B inhibited the activity of AR 50-250 , suggesting that AR 50-250 export is mediated through exportin 1, either directly or indirectly. These observations argue for an important role of the NTD in regulating AR nucleocytoplasmic trafficking and will facilitate further investigation of interactions among different signals in regulating AR nucleocytoplasmic trafficking, which may lead to new approaches to inhibit AR nuclear localization.
Androgen Induces a Switch from Cytoplasmic Retention to Nuclear Import of the Androgen Receptor
Molecular and Cellular Biology, 2013
The androgen receptor (AR) has critical functions as a transcription factor in both normal and cancer cells, but the specific mechanisms that regulate its nuclear localization are not well defined. We found that an AR mutation commonly reported in prostate cancer generates an androgen-independent gain of function for nuclear import. The substitution, Thr877Ala, is within the ligand-binding domain, but the nuclear import gain of function is mediated by the bipartite nuclear localization signal (NLS) spanning the DNA-binding domain (DBD) and hinge region. Bipartite NLS activity depends on the structure provided by the DBD, and protein interactions with the bipartite NLS are repressed by the hinge region. The bipartite NLS is recognized by importin 7, a nuclear import receptor for several proteins. Importin 7 binding to AR, however, inhibits import by shielding the bipartite NLS. Androgen binding relieves the inhibition by inducing a switch that promotes exchange of importin 7 for karyopherin alpha import receptors. Importin 7 contributes to the regulation of AR import by restraining import until androgen is detected in the cytoplasm.
Endocrinology, 2008
Androgen induces androgen receptor (AR) nuclear import, which allows AR to act as a transcriptional factor and ultimately leads to biological activity. However, the mechanism of AR translocation to the nucleus is still unclear. In the present study, we assessed the nuclear import abilities of each domain of AR and their mechanisms related to Ran and importin α/β using green fluorescent protein real-time imaging. The localization of AR to the nucleus in the absence and presence of ligands was dependent upon a complex interplay of the amino terminal transactivation domain (NTD), the DNA binding domain (DBD), and the ligand binding domain (LBD). NTD and DBD showed ligand-independent nuclear import ability, whereas LBD had ligand-dependent transport. In addition, AR deletion mutant lacking DBD was distributed in the cytoplasm regardless of ligand existence, suggesting that the remaining domains, NTD and LBD, are responsible for AR cytoplasmic localization. Cotransfection with a dominant...
Journal of Clinical Endocrinology Amp Metabolism, 1998
The naturally occurring mutations of the androgen receptor (AR), detected in patients with androgen insensitivity syndrome (AIS), are currently analyzed by in vitro assays. Unfortunately, these assays do not always permit the demonstration of a direct relationship between the in vitro activity of the receptor and the severity of the phenotype (in particular, for mutations detected in patients with partial AIS). We recently studied the trafficking of wild-type AR, fused to the green fluorescent protein (GFP) in living cells. In the present study, we applied this method for the analysis of AR mutants to find out whether it could be a complementary method of investigation of AIS. After construction of the GFP-AR mutant fusion proteins, the androgenbinding characteristics, nuclear transfer capacities, and transcriptional activities were evaluated. The nuclear transfer was quantified in the presence of various concentrations of dihydrotestosterone (DHT). We studied two mutants associated with partial AIS: G743V and R840C. The androgen-binding characteristics of both mutants were affected, in comparison with normal AR. Although the affinities were similar, the dissociation rate of GFP-AR-G743V was twice that of GFP-AR-R840C. In transcriptional assay, both mutants were active only at high concentrations of androgen. The nuclear trafficking of the mutants was evaluated by two parameters: 1) the rate of nuclear transfer; and 2) the maximal amount of receptors imported into the nucleus. At 10 Ϫ6 mol/L DHT, the GFP-AR mutants entered into the nucleus in a fashion similar to that of GFP-AR-wt. At 10 Ϫ7 mol/L DHT, the rate and maximal degree of nuclear import were both reduced, even more, for GFP-AR-G743V. The difference between mutants was more pronounced at 10 Ϫ9 mol/L DHT, because GFP-AR-G743V entered into the nucleus with even slower kinetics. Though the androgen-binding affinity and transcriptional activity assays did not reveal major differences between mutants, the dissociation rate and the trafficking capacity measurements permitted the activity of the mutants to be differentiated. We observed that the nuclear transfer capacities of these mutants are in correlation with the severity of the phenotype. The GFP-AR model provides an opportunity both to observe the dynamics of the hormone/receptor complex in living cells and to study the impact of the ligand-binding domain mutation, as opposed to certain in vitro techniques. Because the nuclear import capacity correlates well with the degree of androgen insensitivity, the GFP-AR is a useful complementary tool to understanding the phenotype/genotype relationship of AR function in patients with AIS.
The Journal of Clinical Endocrinology & Metabolism, 1998
The naturally occurring mutations of the androgen receptor (AR), detected in patients with androgen insensitivity syndrome (AIS), are currently analyzed by in vitro assays. Unfortunately, these assays do not always permit the demonstration of a direct relationship between the in vitro activity of the receptor and the severity of the phenotype (in particular, for mutations detected in patients with partial AIS). We recently studied the trafficking of wild-type AR, fused to the green fluorescent protein (GFP) in living cells. In the present study, we applied this method for the analysis of AR mutants to find out whether it could be a complementary method of investigation of AIS. After construction of the GFP-AR mutant fusion proteins, the androgenbinding characteristics, nuclear transfer capacities, and transcriptional activities were evaluated. The nuclear transfer was quantified in the presence of various concentrations of dihydrotestosterone (DHT). We studied two mutants associated with partial AIS: G743V and R840C. The androgen-binding characteristics of both mutants were affected, in comparison with normal AR. Although the affinities were similar, the dissociation rate of GFP-AR-G743V was twice that of GFP-AR-R840C. In transcriptional assay, both mutants were active only at high concentrations of androgen. The nuclear trafficking of the mutants was evaluated by two parameters: 1) the rate of nuclear transfer; and 2) the maximal amount of receptors imported into the nucleus. At 10 Ϫ6 mol/L DHT, the GFP-AR mutants entered into the nucleus in a fashion similar to that of GFP-AR-wt. At 10 Ϫ7 mol/L DHT, the rate and maximal degree of nuclear import were both reduced, even more, for GFP-AR-G743V. The difference between mutants was more pronounced at 10 Ϫ9 mol/L DHT, because GFP-AR-G743V entered into the nucleus with even slower kinetics. Though the androgen-binding affinity and transcriptional activity assays did not reveal major differences between mutants, the dissociation rate and the trafficking capacity measurements permitted the activity of the mutants to be differentiated. We observed that the nuclear transfer capacities of these mutants are in correlation with the severity of the phenotype. The GFP-AR model provides an opportunity both to observe the dynamics of the hormone/receptor complex in living cells and to study the impact of the ligand-binding domain mutation, as opposed to certain in vitro techniques. Because the nuclear import capacity correlates well with the degree of androgen insensitivity, the GFP-AR is a useful complementary tool to understanding the phenotype/genotype relationship of AR function in patients with AIS.
The Journal of Clinical Endocrinology & Metabolism, 2005
Context: Recent imaging studies revealed that androgen receptor (AR) is ligand-dependently translocated from the cytoplasm into the nucleus and forms intranuclear fine foci. In this study, we examined whether intracellular dynamics of mutant ARs detected in two androgen insensitivity syndrome (AIS) patients was impaired.Objective: ARs with mutations in the DNA-binding domain were functionally characterized and compared with the wild-type AR.Patients: In a complete AIS patient (subject 1), cysteine residue 579 in the first zinc finger motif of AR was substituted for phenylalanine (AR-C579F). Another mutation (AR-F582Y) was found in a partial AIS patient (subject 2).Results: AR-F582Y retained less than 10% of the transactivation activity of the wild-type AR, whereas no ligand-dependent transactivation was detected for AR-C579F. Image analyses of the receptors fused to green fluorescent protein showed that the wild-type AR was ligand-dependently translocated into the nucleus in which i...
Molecular Endocrinology, 2000
An expression construct containing the cDNA encoding a modified aequorea green fluorescent protein (GFP) ligated to the 5-end of the rat androgen receptor (AR) cDNA (GFP-AR) was used to study the intracellular dynamics of the receptor movement in living cells. In three different cell lines, i.e. PC3, HeLa, and COS1, unliganded GFP-AR was seen mostly in the cytoplasm and rapidly (within 15-60 min) moved to the nuclear compartment after androgen treatment. Upon androgen withdrawal, the labeled AR migrated back to the cytoplasmic compartment and maintained its ability to reenter the nucleus on subsequent exposure to androgen. Under the condition of inhibited protein synthesis by cycloheximide (50 g/ml), at least four rounds of receptor recycling after androgen treatment and withdrawal were recorded. Two nonandrogenic hormones, 17-estradiol and progesterone at higher concentrations (10 ؊7 /10 ؊6 M), were able to both transactivate the AR-responsive promoter and translocate the GFP-AR into the nucleus. Similarly, antiandrogenic ligands, cyproterone acetate and casodex, were also capable of translocating the cytoplasmic AR into the nucleus albeit at a slower rate than the androgen 5␣-dihydrotestosterone (DHT). All AR ligands with transactivation potential, including the mixed agonist/antagonist cyproterone acetate, caused translocation of the GFP-AR into a subnuclear compartment indicated by its punctate intranuclear distribution. However, translocation caused by casodex, a pure antagonist, resulted in a homogeneous nuclear distribution. Subsequent exposure of the casodextreated cell to DHT rapidly (15-30 min) altered the homogeneous to punctate distribution of the already translocated nuclear AR. When transported into the nucleus either by casodex or by DHT, GFP-AR was resistant to 2 M NaCl extraction, indicating that the homogeneously distributed AR is also associated with the nuclear matrix. Taken together, these results demonstrate that AR requires ligand activation for its nuclear translocation where occupancy by only agonists and partial agonists can direct it to a potentially functional subnuclear location and that one receptor molecule can undertake multiple rounds of hormonal signaling; this indicates that ligand dissociation/ inactivation rather than receptor degradation may play a critical role in terminating hormone action.
The Journal of steroid biochemistry and molecular biology, 2014
Androgen-independent nuclear localization is required for androgen receptor (AR) transactivation in castration-resistant prostate cancer (CRPC) and should be a key step leading to castration resistance. However, mechanism(s) leading to androgen-independent AR nuclear localization are poorly understood. Since the N-terminal domain (NTD) of AR plays a role in transactivation under androgen-depleted conditions, we investigated the role of the NTD in AR nuclear localization in CRPC. Deletion mutagenesis was used to identify amino acid sequences in the NTD essential for its androgen-independent nuclear localization in C4-2, a widely used CRPC cell line. Deletion mutants of AR tagged with green fluorescent protein (GFP) at the 5 -end were generated and their signal distribution was investigated in C4-2 cells by fluorescent microscopy. Our results showed that the region of a.a. 294-556 was required for androgen-independent AR nuclear localization whereas a.a. 1-293 mediates Hsp90 regulation of AR nuclear localization in CRPC cells. Although the region of a.a. 294-556 does not contain a nuclear import signal, it was able to enhance DHT-induced import of the ligand binding domain (LBD). Also, transactivation of the NTD could be uncoupled from its modulation of AR nuclear localization in C4-2 cells. These observations suggest an important role of the NTD in AR intracellular trafficking and androgenindependent AR nuclear localization in CRPC cells.
Molecular Mechanism of Nuclear Translocation of an Orphan Nuclear Receptor, SXR
Molecular Pharmacology, 2003
The steroid and xenobiotic receptor (SXR) is an orphan nuclear receptor that plays a key role in the regulation of xenobiotic response by controlling the expression of drug metabolizing and clearance enzymes. We observed that pregnane X receptor (PXR), the mouse ortholog of SXR, was retained in the cytoplasm of hepatic cells of untreated mice, whereas PXR was translocated to the nucleus after administration of a ligand, pregnenolone 16␣-carbonitrile. To understand the molecular mechanisms underlying the xenochemical-dependent nuclear translocation of SXR, we identified the signal sequence of SXR that regulates its nuclear translocation; using an in vitro expression system, we allocated the nuclear localization signal (NLS)