Simulations of Raman laser amplification in ionizing plasmas (original) (raw)

By using the amplifying laser pulse in a plasma-based backward Raman laser amplifier to generate the plasma by photoionization of a gas simultaneous with the amplification process, possible instabilities of the pumping laser pulse can be avoided. Particle-in-cell simulations are used to study this amplification mechanism, and earlier results using more elementary models of the Raman interaction are verified [D.S.Clark and N.J.Fisch., Phys.Plasmas, 9(6):2772-2780, 2002]. The effects (unique to amplification in ionizing plasmas and not included in previous simulations) of blue-shifting of the pump and seed laser pulses and the generation of a wake are observed not significantly to impact the amplification process. As expected theoretically, the peak output intensity is found to be limited to I ∼ 10 17 W/cm 2 by forward Raman scattering of the amplifying seed. The integrity of the ionization front of the seed pulse against the development of a possible transverse modulation instability is also demonstrated.