Two Retroviral Entry Pathways Distinguished by Lipid Raft Association of the Viral Receptor and Differences in Viral Infectivity (original) (raw)

Imaging Single Retrovirus Entry through Alternative Receptor Isoforms and Intermediates of Virus-Endosome Fusion

PLOS Pathogens, 2011

A large group of viruses rely on low pH to activate their fusion proteins that merge the viral envelope with an endosomal membrane, releasing the viral nucleocapsid. A critical barrier to understanding these events has been the lack of approaches to study virus-cell membrane fusion within acidic endosomes, the natural sites of virus nucleocapsid capsid entry into the cytosol. Here we have investigated these events using the highly tractable subgroup A avian sarcoma and leukosis virus envelope glycoprotein (EnvA)-TVA receptor system. Through labeling EnvA pseudotyped viruses with a pH-sensitive fluorescent marker, we imaged their entry into mildly acidic compartments. We found that cells expressing the transmembrane receptor (TVA950) internalized the virus much faster than those expressing the GPIanchored receptor isoform (TVA800). Surprisingly, TVA800 did not accelerate virus uptake compared to cells lacking the receptor. Subsequent steps of virus entry were visualized by incorporating a small viral content marker that was released into the cytosol as a result of fusion. EnvA-dependent fusion with TVA800-expressing cells occurred shortly after endocytosis and delivery into acidic endosomes, whereas fusion of viruses internalized through TVA950 was delayed. In the latter case, a relatively stable hemifusion-like intermediate preceded the fusion pore opening. The apparent size and stability of nascent fusion pores depended on the TVA isoforms and their expression levels, with TVA950 supporting more robust pores and a higher efficiency of infection compared to TVA800. These results demonstrate that surface receptor density and the intracellular trafficking pathway used are important determinants of efficient EnvA-mediated membrane fusion, and suggest that early fusion intermediates play a critical role in establishing low pH-dependent virus entry from within acidic endosomes.

Effects of lipid rafts on dynamics of retroviral entry and trafficking: Quantitative analysis

Biotechnology and Bioengineering, 2004

The association of cell surface receptors with sterol-sphingolipid-enriched microdomains of the plasma membrane, so-called lipid rafts, may affect the receptor-mediated entry and trafficking dynamics of viruses. A model retrovirus, subgroup A avian sarcoma and leukosis virus (ASLV-A), can initiate infection by binding to either of two forms of the tumor virus subgroup A (TVA) receptor, a lipid-raft-associated glycosylphosphatidylinositol (GPI)-anchored receptor (TVA800) or a transmembrane receptor (TVA950). Narayan et al. previously found that virus particles bound to TVA950 were more rapidly internalized than virions bound to TVA800, and the internalization via TVA950 exhibited biphasic kinetics. To explore potential molecular mechanisms for these results we developed a mathematical model that accounts for internalization of viruses through cellular pits, trafficking to an endosomal compartment where fusion occurs, and viral DNA synthesis. By fitting the model to experimental data we found that viruses bound to TVA950 were internalized up to 2.6-fold more rapidly than viruses bound to TVA800. Two- to threefold greater lateral diffusivities of transmembrane proteins, relative to GPI-anchored proteins, observed in other systems, suggest that the internalization rate of ASLV-A is diffusion-limited. Furthermore, by allowing for recycling of internalized TVA950-bound viruses back to the cell surface, we can account for the observed biphasic internalization kinetics. This mechanism is also consistent with the observed slower rate of DNA synthesis for viruses that enter via TVA950. Overall, the model provides a means to generate new experimentally testable hypotheses and sets a foundation for building a quantitative and integrated understanding of viral entry, trafficking, and intracellular dynamics. © 2004 Wiley Periodicals, Inc.

The Avian Retrovirus Avian Sarcoma/Leukosis Virus Subtype A Reaches the Lipid Mixing Stage of Fusion at Neutral pH

Journal of Virology, 2003

We previously showed that the envelope glycoprotein (EnvA) of avian sarcoma/leukosis virus subtype A (ASLV-A) binds to liposomes at neutral pH following incubation with its receptor, Tva, at ≥22°C. We also provided evidence that ASLV-C fuses with cells at neutral pH. These findings suggested that receptor binding at neutral pH and ≥22°C is sufficient to activate Env for fusion. A recent study suggested that two steps are necessary to activate avian retroviral Envs: receptor binding at neutral pH, followed by exposure to low pH (W. Mothes et al., Cell 103:679-689, 2000). Therefore, we evaluated the requirements for intact ASLV-A particles to bind to target bilayers and fuse with cells. We found that ASLV-A particles bind stably to liposomes in a receptor- and temperature-dependent manner at neutral pH. Using ASLV-A particles biosynthetically labeled with pyrene, we found that ASLV-A mixes its lipid envelope with cells within 5 to 10 min at 37°C. Lipid mixing was neither inhibited nor...

Activation of a Retroviral Membrane Fusion Protein: Soluble Receptor-induced Liposome Binding of the ALSV Envelope Glycoprotein

The Journal of Cell Biology, 1997

It is not known how membrane fusion proteins that function at neutral pH, for example the human immunodeficiency virus envelope (Env) glycoprotein and intracellular fusion machines, are activated for target bilayer binding. We have addressed this question using a soluble oligomeric form of an avian retroviral Env glycoprotein (API) and soluble forms of its receptor. Binding of soluble receptor to API induces API to bind to liposomes composed of phosphatidylcholine and cholesterol at neutral pH. Liposome binding only occurs at fusion permissive temperatures (T Ͼ 20 Њ C), is complete between 2 to 5 min at 37 Њ C, and is stable to high salt, carbonate, and urea. Liposome binding is mediated by the ectodomain of the transmembrane subunit of API, and a mutant with a Val to Glu substitu-Address all correspondence to Judith M. White,

Cell-specific viral targeting mediated by a soluble retroviral receptor-ligand fusion protein

Proceedings of the National Academy of Sciences, 1998

TVA, the cellular receptor for subgroup A avian leukosis viruses (ALV-A) can mediate viral entry when expressed as a transmembrane protein or as a glycosylphosphatidylinositol-linked protein on the surfaces of transfected mammalian cells. To determine whether mammalian cells can be rendered susceptible to ALV-A infection by attaching a soluble form of TVA to their plasma membranes, the TVA-epidermal growth factor (EGF) fusion protein was generated. TVA-EGF is comprised of the extracellular domain of TVA linked to the mature form of human EGF. Flow cytometric analysis confirmed that TVA-EGF is a bifunctional reagent capable of binding simultaneously to cell surface EGF receptors and to an ALV-A surface envelope-Ig fusion protein. TVA-EGF prebound to transfected mouse fibroblasts expressing either wild-type or kinase-deficient human EGF receptors, rendered these cells highly susceptible to infection by ALV-A vectors. Viral infection was blocked specifically in the presence of a recomb...

Quantitative imaging of endosome acidification and single retrovirus fusion with distinct pools of early endosomes

Proceedings of the National Academy of Sciences of the U. S. A., 2012

Diverse enveloped viruses enter host cells through endocytosis and fuse with endosomal membranes upon encountering acidic pH. Currently, the pH dynamics in virus-carrying endosomes and the relationship between acidification and viral fusion are poorly characterized. Here, we examined the entry of avian retrovirus that requires two sequential stimuli—binding to a cognate receptor and low pH—to undergo fusion. A genetically encoded sensor incorporated into the viral membrane was used to measure the pH in virus-carrying endosomes. Acid-induced virus fusion was visualized as the release of a fluorescent viral content marker into the cytosol. The pH values in early acidic endosomes transporting the virus ranged from 5.6 to 6.5 but were relatively stable over time for a given vesicle. Analysis of viral motility and luminal pH showed that cells expressing the transmembrane isoform of the receptor (TVA950) preferentially sorted the virus into slowly trafficking, less acidic endosomes. In contrast, viruses internalized by cells expressing the GPI-anchored isoform (TVA800) were uniformly distributed between stationary and mobile compartments. We found that the lag times between acidification and fusion were significantly shorter and fusion pores were larger in dynamic endosomes than in more stationary compartments. Despite the same average pH within mobile compartments of cells expressing alternative receptor isoforms, TVA950 supported faster fusion than TVA800 receptor. Collectively, our results suggest that fusion steps downstream of the low-pH trigger are modulated by properties of intracellular compartments harboring the virus.

Critical Role of Leucine-Valine Change in Distinct Low pH Requirements for Membrane Fusion between Two Related Retrovirus Envelopes

Journal of Biological Chemistry, 2012

Background: The mechanism of viral membrane fusion is still poorly understood. Results: We show that a leucine-valine change in the JSRV and ENTV Env is responsible for their distinct low pH requirements for fusion. Conclusion: The Leu-Val change likely stabilizes an intermediate induced by receptor binding. Significance: This work represents a unique example whereby a simple Leu-Val change has critical impact on virus entry. Many viruses use a pH-dependent pathway for fusion with host cell membrane, the mechanism of which is still poorly understood. Here we report that a subtle leucine (Leu)-valine (Val) change at position 501 in the envelope glycoproteins (Envs) of two related retroviruses, jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV), is responsible for their distinct low pH requirements for membrane fusion and infection. The Leu and Val residues are predicted to reside within the C-terminal heptad repeat (HR2) region of JSRV and ENTV Envs, particularly proximal to the hairpin turn of the putative six-helix bundle (6HB). Substitution of the JSRV Leu with a Val blocked the Env-mediated membrane fusion at pH 5.0, whereas replacement of the ENTV Val with a Leu rendered the ENTV Env capable of fusing at pH 5.0. A Leu-Val change has no apparent effect on the stability of native Env, but appears to stabilize an intermediate induced by receptor binding. These results are consistent with the existence of at least two metastable conformations of these viral glycoproteins, the native prefusion conformation and a receptor-induced metastable intermediate. Collectively, this work represents an interesting perhaps unique example whereby a simple Leu-Val change has critical impact on pH-dependent virus fusion and entry. Enveloped viruses must fuse with the target cellular membrane to initiate infection, a process that is mediated by the viral fusion proteins present on the virus surface (1). Although highly divergent in primary sequence, viral fusion proteins share remarkable similarities in the high resolution structure, allowing them to be grouped into three classes (2). Among these, class I viral fusion proteins, as exemplified by the influenza virus hemagglutinin (HA), HIV-1 envelope (Env), 4 and paramyxovirus F proteins, have been extensively studied and provided significant insights into our current understanding of membrane fusion and viral infection (2-5). Class I viral fusion proteins are typically synthesized as a precursor, and then cleaved by cellular proteases into two subunits; this process confers the viral fusion proteins to be metastable, with the membrane-distal subunit being responsible for recognizing cellular receptors and the membrane-anchored subunit directly mediating the virus-cell membrane fusion (6). The membraneanchored transmembrane subunit comprises a fusion peptide at or near its N terminus, two central heptad repeats (HRs) known as HR1 and HR2 (or HRA and HRB), a membrane-spanning domain (MSD), and a cytoplasmic tail (CT). HR1 and HR2 are the key elements that are directly involved in the formation of a stable post-fusion conformation, i.e. the six-helix bundle (6HB) (6). The Env proteins of retroviruses belong to the class I viral fusion protein family, consisting of a surface (SU) subunit and a transmembrane (TM) subunit. SU is responsible for binding to the specific cellular receptors or coreceptors, whereas TM is directly involved in fusion between virus and cell membrane

Viruses and endosome membrane dynamics

Current Opinion in Cell Biology, 2009

Cell surface molecules, ligands, and solutes can be endocytosed into animal cells via several pathways in addition to clathrin-mediated endocytosis, which all seem to lead to canonical endosomes. It seems that viruses can enter and infect cells through most of, if not all, endocytic routes, having evolved different, sometimes elaborate, strategies to (mis)use cellular machineries to their own benefit during infection. In this short review, I will discuss recent progress in understanding the pathways followed by animal viruses into cells, and how these studies are also providing novel insights into our understanding of some molecular mechanisms that control endocytic membrane transport.