Tau protein is essential for stress-induced brain pathology (original) (raw)
Related papers
Cerebral cortex (New York, N.Y. : 1991), 2016
Tau protein in dendrites and synapses has been recently implicated in synaptic degeneration and neuronal malfunction. Chronic stress, a well-known inducer of neuronal/synaptic atrophy, triggers hyperphosphorylation of Tau protein and cognitive deficits. However, the cause-effect relationship between these events remains to be established. To test the involvement of Tau in stress-induced impairments of cognition, we investigated the impact of stress on cognitive behavior, neuronal structure, and the synaptic proteome in the prefrontal cortex (PFC) of Tau knock-out (Tau-KO) and wild-type (WT) mice. Whereas exposure to chronic stress resulted in atrophy of apical dendrites and spine loss in PFC neurons as well as significant impairments in working memory in WT mice, such changes were absent in Tau-KO animals. Quantitative proteomic analysis of PFC synaptosomal fractions, combined with transmission electron microscopy analysis, suggested a prominent role for mitochondria in the regulati...
Tau-dependent suppression of adult neurogenesis in the stressed hippocampus
Molecular Psychiatry, 2017
Author surnames have been highlighted-please check these carefully and indicate if the first name or surname have been marked up incorrectly. Please note that this will affect indexing of your article, such as in PubMed. Q1 Please provide the manufacturer's name and city name for Olympus FluoView FV1000, Germany. Q2 Please provide the manufacturer name and location details (city, state (if USA, Canada, Australia) and country) for Fiji Software. Q3 Please provide volume number. and page range in ref. 38. Q4 Please provide department name for all affiliations, if applicable.
2015
Tau-mediated neurodegeneration is a central event in Alzheimer's disease (AD) and other tauopathies. Consistent with suggestions that lifetime stress may be a clinically-relevant precipitant of AD pathology, we previously showed that stress triggers Tau hyperphosphorylation and accumulation; however, little is known about the etiopathogenic interaction of chronic stress with other AD risk factors, such as sex and aging. This study focused on how these various factors converge on the cellular mechanisms underlying Tau aggregation in the hippocampus of chronically stressed male and female (middle-aged and old) mice expressing the most commonly found disease-associated Tau mutation in humans, P301L-Tau. We report that environmental stress triggers memory impairments in female, but not male, P301L-Tau transgenic mice. Furthermore, stress elevates levels of caspase-3-truncated Tau and insoluble Tau aggregates exclusively in the female hippocampus while it also alters the expression of the molecular chaperones Hsp90, Hsp70, and Hsp105, thus favoring accumulation of Tau aggregates. Our findings provide new insights into the molecular mechanisms through which clinically-relevant precipitating factors contribute to the pathophysiology of AD. Our data point to the exquisite sensitivity of the female hippocampus to stress-triggered Tau pathology.
Journal of Neuroscience, 2011
Stressful life experiences are likely etiological factors in sporadic forms of Alzheimer's disease (AD). Many AD patients hypersecrete glucocorticoids (GCs), and their GC levels correlate with the rate of cognitive impairment and extent of neuronal atrophy. Severity of cognitive deficits in AD correlates strongly with levels of hyperphosphorylated forms of the cytoskeletal protein TAU, an essential mediator of the actions of amyloid  (A), another molecule with a key pathogenic role in AD. Our objective was to investigate the sequential interrelationships between these various pathogenic elements, in particular with respect to the mechanisms through which stress might precipitate cognitive decline. We thus examined whether stress, through the mediation of GCs, influences TAU hyperphosphorylation, a critical and early event in the cascade of processes leading to AD pathology. Results from healthy, wild-type, middle-aged rats show that chronic stress and GC induce abnormal hyperphosphorylation of TAU in the hippocampus and prefrontal cortex (PFC), with contemporaneous impairments of hippocampus-and PFC-dependent behaviors. Exogenous GC potentiated the ability of centrally infused A to induce hyperphosphorylation of TAU epitopes associated with AD and cytoplasmic accumulation of TAU, while previous exposure to stress aggravated the biochemical and behavioral effects of GC in A-infused animals. Thus, lifetime stress/GC exposure may have a cumulative impact on the onset and progress of AD pathology, with TAU hyperphosphorylation serving to transduce the negative effects of stress and GC on cognition.
Microtubule-associated protein tau is essential for long-term depression in the hippocampus
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2014
The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer's disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.
Cellular and Molecular Neurobiology, 2009
Transition of protein tau from physiologically unfolded to misfolded state represent enigmatic step in the pathogenesis of tauopathies including Alzheimer's disease (AD). Major molecular events playing role in this process involve truncation and hyperphosphorylation of tau protein, which are accompanied by redox imbalance followed by functional deterioration of neuronal network. Recently we have developed transgenic rat model showing that expression of truncated tau causes neurofibrillary degeneration similar to that observed in brain of AD sufferers. Consequently we tested cortical and hippocampal neuronal cultures extracted from this model as a convenient tool for development of molecules able to target the mechanisms leading to and/or enhancing the process of neurodegeneration. Here we document three major pathological features typical for tauopathies and AD in cortical and hippocampal neurons from transgenic rat in vitro. First, an increased accumulation of human truncated tau in neurons; second, the hyperphosphorylation of truncated tau on the epitopes characteristic of AD (Ser202/Thr205 and Thr231); and third, increased vulnerability of the neurons to nitrative and oxidative stress. Our results show that primary neurons expressing human truncated tau could represent a cellular model for targeting tau related pathological events, namely, aberrant tau protein accumulation, tau hyperphosphorylation, and oxidative/nitrative damage. These characteristics make the model particularly suitable for detailed study of molecular mechanisms of tau induced neurodegeneration and easily applicable for drug screening.
Tau Protein and Adult Hippocampal Neurogenesis
Frontiers in Neuroscience, 2012
Tau protein is a microtubule-associated protein found in the axonal compartment that stabilizes neuronal microtubules under normal physiological conditions. Tau metabolism has attracted much attention because of its role in neurodegenerative disorders called tauopathies, mainly Alzheimer disease. Here, we review recent findings suggesting that axonal outgrowth in subgranular zone during adult hippocampal neurogenesis requires a dynamic microtubule network and tau protein facilitates to maintain that dynamic cytoskeleton. Those functions are carried out in part by tau isoform with only three microtubulebinding domains (without exon 10) and by presence of hyperphosphorylated tau forms. Thus, tau is a good marker and a valuable tool to study new axons in adult neurogenesis.
Tau Protein Is Required for Amyloid -Induced Impairment of Hippocampal Long-Term Potentiation
Journal of Neuroscience, 2011
Amyloid  (A) and tau protein are both implicated in memory impairment, mild cognitive impairment (MCI), and early Alzheimer's disease (AD), but whether and how they interact is unknown. Consequently, we asked whether tau protein is required for the robust phenomenon of A-induced impairment of hippocampal long-term potentiation (LTP), a widely accepted cellular model of memory. We used wild-type mice and mice with a genetic knockout of tau protein and recorded field potentials in an acute slice preparation. We demonstrate that the absence of tau protein prevents A-induced impairment of LTP. Moreover, we show that A increases tau phosphorylation and that a specific inhibitor of the tau kinase glycogen synthase kinase 3 blocks the increased tau phosphorylation induced by A and prevents A-induced impairment of LTP in wild-type mice. Together, these findings show that tau protein is required for A to impair synaptic plasticity in the hippocampus and suggest that the A-induced impairment of LTP is mediated by tau phosphorylation. We conclude that preventing the interaction between A and tau could be a promising strategy for treating cognitive impairment in MCI and early AD.
Proceedings of the National Academy of Sciences, 2012
Exposure and/or sensitivity to stress have been implicated as conferring risk for development of Alzheimer's disease (AD). Although the basis for such a link remains unclear, we previously reported differential involvement of corticotropin-releasing factor receptor (CRFR) 1 and 2 in acute stress-induced tau phosphorylation (tau-P) and solubility in the hippocampus. Here we examined the role of CRFRs in tau-P induced by repeated stress and the structural manifestations of altered tau solubility. Robust tau-P responses were seen in WT and CRFR2 null mice exposed to repeated stress, which were sustained at even 24 h after the final stress exposure. A portion of phosphorylated tau in these mice was sequestered in detergent-soluble cellular fractions. In contrast, CRFR1 and CRFR double-KO mice did not exhibit repeated stress-induced alterations in tau-P or solubility. Similarly, treatment with CRFR1 antagonist attenuated repeated stress-induced tau-P. Using histochemical approaches in a transgenic CRFR1 reporter mouse line, we found substantial overlap between hippocampal CRFR1 expression and cells positive for phosphorylated tau after exposure to repeated stress. Ultrastructural analysis of negatively stained extracts from WT and CRFR2 null mice identified globular aggregates that displayed positive immunogold labeling for tau-P, as well as conformational changes in tau (MC1) seen in early AD. Given that repeated stress exposure results in chronic increases in hippocampal tau-P and its sequestration in an insoluble (and potentially prepathogenic) form, our data may define a link between stress and an AD-related pathogenic mechanism. neurofibrillary tangles | western blot | pathology | electron microscopy A lzheimer's disease (AD) is definitively characterized by the presence of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs). NFTs are insoluble intracellular inclusions composed of aggregated hyperphosphorylated forms of the cytoskeletal protein tau that accumulate initially within the hippocampal formation (1). A critical step in NFT formation is thought to be the transition of these phosphorylated tau species into aggregated insoluble fibrils. Hyperphosphorylated tau has a reduced ability to bind microtubules and has been reported to self-aggregate into paired helical filaments (PHFs), which compose NFTs (2, 3). The development of NFTs is positively correlated with cognitive decline and neuronal loss in AD (4, 5).
Loss of tau rescues inflammation-mediated neurodegeneration
Frontiers in Neuroscience, 2015
Neuroinflammation is one of the neuropathological hallmarks of Alzheimer's disease (AD) and related tauopathies. Activated microglia spatially coexist with microtubule-associated protein tau (Mapt or tau)-burdened neurons in the brains of human AD and non-AD tauopathies. Numerous studies have suggested that neuroinflammation precedes tau pathology and that induction or blockage of neuroinflammation via lipopolysaccharide (LPS) or anti-inflammatory compounds (such as FK506) accelerate or block tau pathology, respectively in several animal models of tauopathy. We have previously demonstrated that microglia-mediated neuroinflammation via deficiency of the microglia-specific chemokine (fractalkine) receptor, CX3CR1, promotes tau pathology and neurodegeneration in a mouse model of LPS-induced systemic inflammation. Here, we demonstrate that tau mediates the neurotoxic effects of LPS in Cx3cr1 −/− mice. First, Mapt +/+ neurons displayed elevated levels of Annexin V (A5) and TUNEL (markers of neurodegeneration) when co-cultured with LPS-treated Cx3cr1 −/− microglia, which is rescued in Mapt −/− neurons. Second, a neuronal population positive for phospho-S199 (AT8) tau in the dentate gyrus is also positive for activated or cleaved caspase (CC3) in the LPS-treated Cx3cr1 −/− mice. Third, genetic deficiency for tau in Cx3cr1 −/− mice resulted in reduced microglial activation, altered expression of inflammatory genes and a significant reduction in the number of neurons positive for CC3 compared to Cx3cr1 −/− mice. Finally, Cx3cr1 −/− mice exposed to LPS displayed a lack of inhibition in an open field exploratory behavioral test, which is rescued by tau deficiency. Taken together, our results suggest that pathological alterations in tau mediate inflammation-induced neurotoxicity and that deficiency of Mapt is neuroprotective. Thus, therapeutic approaches toward either reducing tau levels or blocking neuroinflammatory pathways may serve as a potential strategy in treating tauopathies.