A Polygenic Risk Score Predicts Incident Prostate Cancer Risk in Older Men but Does Not Select for Clinically Significant Disease (original) (raw)

Polygenic hazard score is associated with prostate cancer in multi-ethnic populations

Objectives: A polygenic hazard score (PHS1)--weighted sum of 54 single-nucleotide polymorphism genotypes--was previously associated with age at prostate cancer (PCa) diagnosis and improved PCa screening accuracy in Europeans. Performance in more diverse populations is unknown. We evaluated PHS association with PCa in multi-ethnic populations. Design: PHS1 was adapted for compatibility with genotype data from the OncoArray project (PHS2) and tested for association with age at PCa diagnosis, at aggressive PCa diagnosis, and at PCa death. Setting: Multiple international institutions. Participants: Men with available OncoArray data from the PRACTICAL consortium who were not included in PHS1 development/validation. Main Outcomes and Measures: PHS2 was tested via Cox proportional hazards models for age at PCa diagnosis, age at aggressive PCa diagnosis (any of: Gleason score ≥7, stage T3-T4, PSA≥10 ng/mL, nodal/distant metastasis), and age at PCa-specific death. Results: 80,491 men of vari...

The effect of sample size on polygenic hazard models for prostate cancer

2019

We aimed to determine the effect of sample size on performance of polygenic hazard score (PHS) models in predicting the age at onset of prostate cancer. Age and genotypes were obtained for 40,861 men from the PRACTICAL consortium. The dataset included 201,590 SNPs per subject, and was split into training (34,444 samples) and testing (6,417 samples) sets. Two PHS model-building strategies were investigated. Established-SNP model considered 65 SNPs that had been associated with prostate cancer in the literature. A stepwise SNP selection was used to develop Discovery-SNP models. The performance of each PHS model was calculated for random sizes of the training set (1 to 30 thousand). The performance of a representative Established-SNP model was estimated for random sizes of the testing set (0.5 to 6 thousand). Mean HR98/50 (hazard ratio of top 2% to the average in the test set) of the Established-SNP model increased from 1.73[95%CI: 1.69-1.77] to 2.41[2.40-2.43] when the number of train...

Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts

BMJ (Clinical research ed.), 2018

To develop and validate a genetic tool to predict age of onset of aggressive prostate cancer (PCa) and to guide decisions of who to screen and at what age. Analysis of genotype, PCa status, and age to select single nucleotide polymorphisms (SNPs) associated with diagnosis. These polymorphisms were incorporated into a survival analysis to estimate their effects on age at diagnosis of aggressive PCa (that is, not eligible for surveillance according to National Comprehensive Cancer Network guidelines; any of Gleason score ≥7, stage T3-T4, PSA (prostate specific antigen) concentration ≥10 ng/L, nodal metastasis, distant metastasis). The resulting polygenic hazard score is an assessment of individual genetic risk. The final model was applied to an independent dataset containing genotype and PSA screening data. The hazard score was calculated for these men to test prediction of survival free from PCa. Multiple institutions that were members of international PRACTICAL consortium. All conso...

A genetic hazard score to personalize prostate cancer screening, applied to population data

2019

Background: Genetic risk stratification may inform decisions of whether, and when, a man should undergo prostate cancer (PCa) screening. We previously validated a polygenic hazard score (PHS), a weighted sum of 54 single-nucleotide polymorphism genotypes, for accurate prediction of age of onset of aggressive PCa and improved screening performance. We now assess the potential impact of PHS-informed screening. Methods: United Kingdom population data were fit to a continuous model of age-specific PCa incidence. Using hazard ratios estimated from ProtecT trial data, age-specific incidence rates were calculated for percentiles of genetic risk. Incidence of higher-grade PCa (Gleason≥7) was estimated from age-specific data from the linked CAP trial. PHS and incidence data were combined to give a risk-equivalent age, when a man with a given PHS percentile will have risk of higher-grade PCa equivalent to that of a typical man at age 50 (50-years standard). Positive predictive value (PPV) of ...

Prostate cancer risk stratification improved across multiple ancestries with new polygenic hazard score

2021

IntroductionProstate cancer risk stratification using single-nucleotide polymorphisms (SNPs) demonstrates considerable promise in men of European, Asian, and African genetic ancestries, but there is still need for increased accuracy. We evaluated whether including additional SNPs in a prostate cancer polygenic hazard score (PHS) would improve associations with clinically significant prostate cancer in multi-ancestry datasets.MethodsIn total, 299 SNPs previously associated with prostate cancer were evaluated for inclusion in a new PHS, using a LASSO-regularized Cox proportional hazards model in a training dataset of 72,181 men from the PRACTICAL Consortium. The PHS model was evaluated in four testing datasets: African ancestry, Asian ancestry, and two of European Ancestry—the Cohort of Swedish Men (COSM) and the ProtecT study. Hazard ratios (HRs) were estimated to compare men with high versus low PHS for association with clinically significant, with any, and with fatal prostate cance...

Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score

Prostate Cancer and Prostatic Diseases, 2022

Background Prostate cancer risk stratification using single-nucleotide polymorphisms (SNPs) demonstrates considerable promise in men of European, Asian, and African genetic ancestries, but there is still need for increased accuracy. We evaluated whether including additional SNPs in a prostate cancer polygenic hazard score (PHS) would improve associations with clinically significant prostate cancer in multi-ancestry datasets. Methods In total, 299 SNPs previously associated with prostate cancer were evaluated for inclusion in a new PHS, using a LASSO-regularized Cox proportional hazards model in a training dataset of 72,181 men from the PRACTICAL Consortium. The PHS model was evaluated in four testing datasets: African ancestry, Asian ancestry, and two of European Ancestry—the Cohort of Swedish Men (COSM) and the ProtecT study. Hazard ratios (HRs) were estimated to compare men with high versus low PHS for association with clinically significant, with any, and with fatal prostate canc...

Validation of a multi-ancestry polygenic risk score and age-specific risks of prostate cancer: A meta-analysis within diverse populations

eLife

Background:We recently developed a multi-ancestry polygenic risk score (PRS) that effectively stratifies prostate cancer risk across populations. In this study, we validated the performance of the PRS in the multi-ancestry Million Veteran Program and additional independent studies.Methods:Within each ancestry population, the association of PRS with prostate cancer risk was evaluated separately in each case–control study and then combined in a fixed-effects inverse-variance-weighted meta-analysis. We further assessed the effect modification by age and estimated the age-specific absolute risk of prostate cancer for each ancestry population.Results:The PRS was evaluated in 31,925 cases and 490,507 controls, including men from European (22,049 cases, 414,249 controls), African (8794 cases, 55,657 controls), and Hispanic (1082 cases, 20,601 controls) populations. Comparing men in the top decile (90–100% of the PRS) to the average 40–60% PRS category, the prostate cancer odds ratio (OR) w...

African-specific improvement of a polygenic hazard score for age at diagnosis of prostate cancer

2020

IntroductionPolygenic hazard score (PHS) models are associated with age at diagnosis of prostate cancer. Our model developed in Europeans (PHS46), showed reduced performance in men with African genetic ancestry. We used a cross-validated search to identify SNPs that might improve performance in this population.Material and MethodsAnonymized genotypic data were obtained from the PRACTICAL consortium for 6,253 men with African genetic ancestry. Ten iterations of a ten-fold cross-validation search were conducted, to select SNPs that would be included in the final PHS46+African model. The coefficients of PHS46+African were estimated in a Cox proportional hazards framework using age at diagnosis as the dependent variable and PHS46, and selected SNPs as predictors. The performance of PHS46 and PHS46+African were compared using the same cross-validated approach.ResultsThree SNPs (rs76229939, rs74421890, and rs5013678) were selected for inclusion in PHS46+African. All three SNPs are located...

Additional SNPs improve the performance of a polygenic hazard score for prostate cancer

2020

Background: Polygenic hazard scores (PHS) can identify individuals with increased risk of prostate cancer. We estimated the benefit of additional SNPs on performance of a previously validated PHS (PHS46). Materials and Method: 180 SNPs, shown to be previously associated with prostate cancer, were used to develop a PHS model in men with European ancestry. A machine-learning approach, LASSO-regularized Cox regression, was used to select SNPs and to estimate their coefficients in the training set (75,596 men). Performance of the resulting model was evaluated in the testing/validation set (6,411 men) with two metrics: (1) hazard ratios (HRs) and (2) positive predictive value (PPV) of prostate-specific antigen (PSA) testing. HRs were estimated between individuals with PHS in the top 5% to those in the middle 40% (HR95/50), top 20% to bottom 20% (HR80/20), and bottom 20% to middle 40% (HR20/50). PPV was calculated for the top 20% (PPV80) and top 5% (PPV95) of PHS as the fraction of indivi...