Optimization of protein yields by ultrasound assisted extraction from Eurycoma longifolia roots and effect of agitation speed (original) (raw)

Sequential ultrasound-microwave assisted extraction of water soluble proteins from Eurycoma longifolia roots

IOP Conference Series: Materials Science and Engineering, 2020

Even though Eurycoma longifolia was extensively studied, few researches investigated the protein content in its water extracts with the consideration of establishing the most suitable extraction method to increase their yields with high efficiency and less time consumption. The study applied a sequential extraction method to increase the yields of water soluble proteins (WSPs) in E. longifolia root extracts by the application of two nonconventional extraction methods, Microwave assisted extraction (MAE) and ultrasound assisted extraction (UAE). The study was established by circumscribed central composite designs (CCCDs) to indicate the optimum extraction conditions and the corresponding maximum WSPs yields for both the methods by investigating the MAE factors which were temperature (T); microwave power (W) and irradiation time (i) and UAE factors temperature (T); ultrasonic intensity (UI); and sonication time (s). The optimum conditions of MAE (T: 54°C, W: 301W and i: 15 min) led to...

A Comparative Study between Response Surface Methodology and Genetic Algorithm in Optimization and Extraction of Leaf Protein Concentrate from Diplazium esculentum of Assam

Fern is a seedless vascular plant that reproduces via spores and has various usefulness. This study was carried out to optimize the conditions of leaf protein concentrate extraction using ultrasound from defatted fern type Diplazium esculentum. The extraction of defatted fern protein was conducted using ultrasound. Rotatable central composite design (RCCD) of response surface methodology was used for identification of the best condition and extraction yield optimization. An attempt with genetic algorithm optimization was also carried out and revealed that optimized results were of highest desirability as compared to response surface methodology. The final optimum results, by using genetic algorithm was observed to be 21.12 min of sonication time, 56.88 °C temperature, 7.59 pH and 66.2 ml of solvent for an optimum protein yield of 33.79% where desirability value was 1.00. UHPLC analysis of the sample revealed the presence of all the essential amino acids, except tryptophan.

A Dynamic Model for Ultrasonic – assisted Extraction of Bio-active Compounds from Natural Products

ASEAN Journal of Chemical Engineering, 2013

Ultrasonic technique has been applied for extraction processes, especially for separation of bio-active substances from natural organic products because of the short time requirement, energy saving and easy operating. The ultrasonic-assisted extraction (UE) therefore becomes a promising option. However, a major available obstacle was the lack of appropriate models for designing technological process. This paper presents a dynamic model for the UE process, application of separation of bio-active substances from natural products such as Curcumin from rhizome of Curcuma Longa L., Epigallocatechin from green tea leaf of Camellia Sinensis and Rutin from bud of Sophora Japonica. The agreement between data from experiment and calculated ones with the model indicates that, this dynamic model is suitable for prediction of the UE process and for serving as the base for further investigation into scale-up the extraction process.

Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes

Experimental design plays an important role in several areas of science and industry. Experimentation is an application of treatments applied to experimental units and is then part of a scientific method based on the measurement of one or more responses. It is necessary to observe the process and the operation of the system well. For this reason, in order to obtain a final result, an experimenter must plan and design experiments and analyzes the results. One of the most commonly used experimental designs for optimization is the response surface methodology (RSM). Because it allows evaluating the effects of multiple factors and their interactions on one or more response variables it is a useful method. In this section, recent studies have been compiled which aim to extraction of plant material in high yield and quality and determine optimum conditions for this extraction process.

Optimization of ultrasound-assisted extraction of phenolic content & antioxidant activity of hog plum (Spondias pinnata L. f. kurz) pulp by response surface methodology

Heliyon

Background: The pulp of hog plum (Spondias pinnata L. f. kurz) has been documented as a potential source of nutritional, physiological, and pharmacological purposes due to its phenolic content (TPC) and antioxidant activity. However, an optimal extraction condition for hog plum pulp remains elusive. Optimization of extraction process conditions using Ultrasound-assisted extraction (UAE) technique has recently attracted research interest. Objectives: The present study focused on optimizing the UAE extraction conditions of TPC and antioxidant activities (DPPH and FRAP) from hog plum pulp by using response surface methodology (RSM). Methods: The RSM with a three-factor-three-level Box-Behnken design (BBD) was used to optimize the extraction conditions. The BBD was used to investigate the effects of three independent variables, X 1 : ultrasonic temperature (40-60 C), X 2 : ultrasonic time (30-60 min), and X 3 : ethanol concentration (40-80%) on TPC, DPPH and FRAP assays. Fifteen experimental trials have been carried out to optimize the UAE extraction conditions. A secondorder polynomial model was used for predicting the responses. Statistically, the model was validated using an analysis of variance (ANOVA). Results: The ANOVA results revealed that UAE extraction temperature, time, and ethanol concentration had a significant (p < 0.01) influence on the TPC, DPPH, and FRAP, suggesting that all extraction parameters included in this investigation were crucial to the optimization process. For TPC, DPPH, and FRAP, the R 2 values were 0.9976, 0.9943, and 0.9989, respectively, indicating that the models developed based on second-order polynomials were satisfactorily accurate for analyzing interactions between parameters (response and independent variables). RSM analysis showed that the optimal extraction parameters which maximized TPC, DPPH, and FRAP were 52.03 C temperature, 30 min, time, and 79.99% ethanol. Under optimal conditions, experimental values for TPC, DPPH, and FRAP were 370 AE 26 mg GAE/100g DM, 57 AE 7%, and 7650 AE 460 mg AAE/100 g DM, respectively. The experimental values showed a good agreement with the predicted values with residual standard error values below 0.2% under optimum conditions. Pearson's correlation coefficients (r) demonstrate that the TPC showed a weak positive correlation with DPPH (r ¼ 0.3508) and moderate correlation with FRAP (r ¼ 0.3963). Conclusion: The experimental results agreed with the predicted values, confirming the model's appropriateness and RSM's efficacy in optimizing the UAE extraction conditions. This optimized UAE extraction method may be effective in the industrial extraction process; moreover, further research should be conducted to determine the efficacy of these extracts when applied to food.

Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources

Molecules

Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their b...

Modelling and Optimisation of Eurycoma longifolia Extraction Utilising a Recirculating Flow Extractor

2007

In this study, Tongkat Ali was extracted with a newly designed recirculating flow extractor with temperature and flow rate as the operating parameters. The optimum duration and ratio for extraction were found to be 90 min and 40:1 w/w, respectively. The determination of optimal operating parameter value for this extractor was based on maximum percentage extract yield and solid diffusivity, Ds,. From the experiments, it was found that the temperature and flow rate that produce the highest yield and solid diffusivity value were at 90°C and 400 rpm (22.47 mL sec-1), respectively. The optimal operating parameter values were used to compare the recirculating flow extractor performance with a batch extraction at 90°C. The comparison showed that the batch extraction was able to extract more rapidly than the recirculating flow extractor. The solid diffusivity, Ds, value for the batch extraction was found to be is 3.12x10-11 m2 sec-1 while the recirculating flow extractor had a solid diffusivity, Ds, value of 2.98x10-11 m2 sec-1 which indicated the difference in extraction rate. However, by utilizing the recirculating flow extractor, a higher final yield than batch extraction was produced which is 7.70% (w/w) for the recirculating flow extractor and 6.67% (w/w) for the batch extraction. This is possibly caused by the higher rates of solvent losses through evaporation for batch extraction.

Applications and opportunities for ultrasound assisted extraction in the food industry — A review

Innovative Food Science & Emerging Technologies, 2008

Ultrasound assisted extraction (UAE) process enhancement for food and allied industries are reported in this review. This includes herbal, oil, protein and bioactives from plant and animal materials (e.g. polyphenolics, anthocyanins, aromatic compounds, polysaccharides and functional compounds) with increased yield of extracted components, increased rate of extraction, achieving reduction in extraction time and higher processing throughput. Ultrasound can enhance existing extraction processes and enable new commercial extraction opportunities and processes. New UAE processing approaches have been proposed, including, (a) the potential for modification of plant cell material to provide improved bioavailability of micro-nutrients while retaining the natural-like quality, (b) simultaneous extraction and encapsulation, (c) quenching of the radical sonochemistry especially in aqueous systems to avoid degradation of bioactives and (d) potential use of the radical sonochemistry to achieve targeted hydroxylation of polyphenolics and carotenoids to increase bioactivity.

Optimization of A Procedure to Improve the Extraction Rate of Biologically Active Compounds in Red Grape Must Using High-Power Ultrasound

Sustainability

The primary focus in the production of quality red wine is the extraction of grape components, which can be achieved in a variety of ways. This work investigates the extraction yield of biologically active compounds from crushed Merlot grapes, as a result of ultrasound treatment applied before maceration, and optimizes the process parameters of a laboratory scale using response surface methodology (RSM) within a central composite design (CCD) model. The two factors whose response was studied were amplitude (A) % and treatment time (t), while the dependent variables were the total phenolic compounds (TPC), monomeric anthocyanins (MA), and antioxidant activity expressed as ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity. The results showed that the application of high-power ultrasound treatment to crushed grapes for a few minutes increased both the extraction rate of bioactive compounds and the antioxidant activity by ...

Novel Extraction Method to Produce Active Solutions from Plant Materials

A novel selective extraction method to produce active solutions with from plant materials was developed. Named by our research group as High Turbulence Extraction Assisted by Ultrasound (HTEAU) the feasibility of this process was demonstrated using semi-defatted annatto seeds (Bixa orellana L.) as a model plant material and ethanol as extracting solvent. HTEAU process combines the use of two types of commercial equipments and technologies. The first is Ultra-turrax ® rotor-stator technology, which produces high turbulence in the plant material bed by high extracting solvent circulation flow rate (until 2000 cm 3 /min) and the second is ultrasound technology, which is recognized to improve the extraction rate by the increasing the mass transfer and possible rupture of cell wall due the formation of microcavities. These equipments were coupled and put into operation at its maximum power of operability and the values for these parameters were determined through simultaneous optimization of oils, phenols, bixin recoveries. The effects of extraction method and solvent mass to feed mass ratio (S/F) on oils, phenols, bixin recoveries were evaluated by analyses of variance (ANOVA), demonstrating that the coupling of ultrasound probe into the Ultra-turrax ® equipment statistically promotes the selective extraction of total phenols and bixin.