Universal Distribution of Transparencies in Highly Conductive Nb/AlOx/Nb Junctions (original) (raw)

Abstract

We report the observation of the universal distribution of transparencies, predicted by Schep and Bauer [Phys. Rev. Lett. {\bf 78}, 3015 (1997)] for dirty sharp interfaces, in uniform Nb/AlO$_x$/Nb junctions with high specific conductance ($10^8$ Ohm$^{-1}$cm$^{-2}$). Experiments used the BCS density of states in superconducting niobium for transparency distribution probing. Experimental results for both the dc I−VI-VIV curves at magnetic-field-suppressed supercurrent and the Josephson critical current in zero magnetic field coincide remarkably well with calculations based on the multimode theory of multiple Andreev reflections and the Schep-Bauer distribution.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (32)

  1. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
  2. O. N. Dorokhov, JETP Lett. 36, 318 (1982).
  3. C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46, 1889 (1992).
  4. E. V. Sukhorukov and D. Loss, Phys. Rev. Lett. 80, 4959 (1998).
  5. A.H. Steinbach, J.M. Martinis, and M.H. Devoret, Phys. Rev. Lett. 76, 3806 (1996).
  6. M. Henny, H. Birk, R. Huber, C. Strunk, A. Bachtold, M. Krüger, and C. Schönenberger, Appl. Phys. Lett. 71, 773 (1997).
  7. R. J. Schoelkopf, P. J. Burke, A. Kozhevnikov, D. E. Prober, and M. J. Rooks, Phys. Rev. Lett. 78, 3370 (1997).
  8. K. M. Schep and G. E. W. Bauer, Phys. Rev. Lett. 78, 3015 (1997);
  9. Phys. Rev. B 56, 15860 (1997).
  10. The distribution (2) was derived [10] for the first time for a system that is physically very much different from dis- ordered interface: long ballistic double-barrier structure with symmetric uniform tunnel barriers. The reasons for coincidence between the two systems are not completely clear.
  11. J.A. Melsen and C.W.J. Beenakker, Physica B 203, 219 (1994).
  12. E. N. Bratus, V. S. Shumeiko, and G. Wendin, Phys. Rev. Lett. 74, 2110 (1195).
  13. D. V. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995).
  14. A. Bardas and D. V. Averin, Phys. Rev. B 56, R8518 (1997).
  15. N. van der Post, E. T. Peters, I. K. Yanson, and J. M. van Ruitenbeek, Phys. Rev. Lett. 73, 2611 (1994).
  16. E. Scheer, P. Joyez, D. Esteve, C. Urbina, and M.H. De- voret, Phys. Rev. Lett. 78, 3535 (1997).
  17. E. Scheer, N. Agrait, J. C. Cuevas, A. Levi Yeyati, B. Ludoph, A. Martin-Rodero, G. R. Bollinger, J. M. Van Ruitenbeek, and C. Urbina, Nature 394, 154 (1998).
  18. M. Bhushan, Z. Bao, B. Bi, M. Kemp, K. Lin, A. Oliva, R. Rouse, S. Han, and J. E. Lukens, in Extended Ab- stracts of the 5th International Superconductive Electron- ics Conference (Nagoya, Japan, 1995), p. 17.
  19. V. Patel and J. E. Lukens, IEEE Trans. Appl. Supercon. 9, 3247 (1999).
  20. P. H. Kes, J. G. A. Rolfes, and D. de Klerk, J. Low Temp. Phys. 17, 341 (1974).
  21. Similar calculation for the double-barrier junctions was performed by A. Brinkman and A. A. Golubov, cond- mat/9912109.
  22. The latter value was measured in a narrow temperature interval below Tc where the junction dc I -V curves are almost linear while the junction electrodes are still super- conducting. This procedure may easily give a few percent error.
  23. S. N. Artemenko, A. F. Volkov, and A. V. Zaitsev, Sov. Phys. JEPT 49, 924 (1979).
  24. The two latter curves may be readily calculated from the current-phase relation for a single channel [24,25] by its averaging with the respective weight (1),(2) and then maximizing the current over the Josephson phase differ- ence.
  25. W. Haberkorn, H. Knauer, and J. Richter, Phys. Status Solidi A 47 K161 (1978).
  26. C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).
  27. I.O. Kulik and A.N. Omel'yanchuk, JETP Lett. 21, 96 (1975).
  28. Preliminary measurements of the nonlinearity of dc I -V curves of our junctions at large voltages, combined with the independent measurements of their specific capac- itance, indicate that the effective height of the effective tunnel barrier is close to 2 eV, while the average dielectric constant is about 5. Both parameters are substantially different from those of crystalline Al2O3, indicating that the aluminum oxide structure is highly disordered.
  29. Results of previous experiments with large-area, multi- mode Josephson junctions in the MAR regime could be interpreted as an evidence of either a small number of high-transparency pinholes [29], or of percolation paths through localized states [30]. In both cases, the samples were much less uniform than our junctions, so that ap- parently such explanations were adequate.
  30. A. W. Kleinsasser, R. E. Miller, W. H. Mallison, and G. B. Arnold, Phys. Rev. Lett. 72, 1738 (1994).
  31. A. Frydman and Z. Ovadyahu, Phys. Rev. B 55, 9047 (1997).
  32. K. K. Likharev, in Applications of Superconductivity, ed. by H. Weinstock (Kluwer, Dordrecht, 2000), p. 247.