Removal of Analyte-Irrelevant Variations in Near-Infrared Tissue Spectra (original) (raw)
This paper describes mathematical techniques to correct for analyte-irrelevant optical variability in tissue spectra by combining multiple preprocessing techniques to address variability in spectral properties of tissue overlying and within the muscle. A mathematical preprocessing method called principal component analysis (PCA) loading correction is discussed for removal of inter-subject, analyte-irrelevant variations in muscle scattering from continuous-wave diffuse reflectance near-infrared (NIR) spectra. The correction is completed by orthogonalizing spectra to a set of loading vectors of the principal components obtained from principal component analysis of spectra with the same analyte value, across different subjects in the calibration set. Once the loading vectors are obtained, no knowledge of analyte values is required for future spectral correction. The method was tested on tissue-like, three-layer phantoms using partial least squares (PLS) regression to predict the absorb...