DialogWAE: Multimodal Response Generation with Conditional Wasserstein Auto-Encoder (original) (raw)
Related papers
A Conditional Variational Framework for Dialog Generation
Deep latent variable models have been shown to facilitate the response generation for open-domain dialog systems. However , these latent variables are highly ran-domized, leading to uncontrollable generated responses. In this paper, we propose a framework allowing conditional response generation based on specific attributes. These attributes can be either manually assigned or automatically detected. Moreover , the dialog states for both speakers are modeled separately in order to reflect personal features. We validate this framework on two different scenarios, where the attribute refers to genericness and sentiment states respectively. The experiment result testified the potential of our model, where meaningful responses can be generated in accordance with the specified attributes.
Adversarial Learning on the Latent Space for Diverse Dialog Generation
2020
Generating relevant responses in a dialog is challenging, and requires not only proper modeling of context in the conversation, but also being able to generate fluent sentences during inference. In this paper, we propose a two-step framework based on generative adversarial nets for generating conditioned responses. Our model first learns a meaningful representation of sentences by autoencoding, and then learns to map an input query to the response representation, which is in turn decoded as a response sentence. Both quantitative and qualitative evaluations show that our model generates more fluent, relevant, and diverse responses than existing state-of-the-art methods.
Generative Deep Neural Networks for Dialogue: A Short Review
Researchers have recently started investigating deep neural networks for dialogue applications. In particular, generative sequence-to-sequence (Seq2Seq) models have shown promising results for unstructured tasks, such as word-level dialogue response generation. The hope is that such models will be able to leverage massive amounts of data to learn meaningful natural language representations and response generation strategies, while requiring a minimum amount of domain knowledge and hand-crafting. An important challenge is to develop models that can effectively incorporate dialogue context and generate meaningful and diverse responses. In support of this goal, we review recently proposed models based on generative encoder-decoder neural network architectures, and show that these models have better ability to incorporate long-term dialogue history, to model uncertainty and ambiguity in dialogue, and to generate responses with high-level compositional structure.
Multi-turn Dialogue Response Generation in an Adversarial Learning Framework
Proceedings of the First Workshop on NLP for Conversational AI, 2019
We propose an adversarial learning approach for generating multi-turn dialogue responses. Our proposed framework, hredGAN, is based on conditional generative adversarial networks (GANs). The GAN's generator is a modified hierarchical recurrent encoder-decoder network (HRED) and the discriminator is a word-level bidirectional RNN that shares context and word embeddings with the generator. During inference, noise samples conditioned on the dialogue history are used to perturb the generator's latent space to generate several possible responses. The final response is the one ranked best by the discriminator. The hredGAN shows improved performance over existing methods: (1) it generalizes better than networks trained using only the log-likelihood criterion, and (2) it generates longer, more informative and more diverse responses with high utterance and topic relevance even with limited training data. This improvement is demonstrated on the Movie triples and Ubuntu dialogue datasets using both automatic and human evaluations.
Conditional Response Generation Using Variational Alignment
2019
Generating relevant/conditioned responses in dialog is challenging, and requires not only proper modelling of context in the conversation, but also the ability to generate fluent sentences during inference. In this paper, we propose a two-step framework based on generative adversarial nets for generating conditioned responses. Our model first learns meaningful representations of sentences, and then uses a generator to \textit{match} the query with the response distribution. Latent codes from the latter are then used to generate responses. Both quantitative and qualitative evaluations show that our model generates more fluent, relevant and diverse responses than the existing state-of-the-art methods.
Comparison Between Variational Autoencoder and Encoder-Decoder Models for Short Conversation
Proceedings of International Conference on Artificial Life and Robotics
We provide a point of view concerning generative models such that they could deal with short conversation. These include the standard recurrent neural network language, sequence to sequence, vector embedding, and variational autoencoder models. These models seem to be possible candidates to describe such conversations, there are several differences among them.
Dialog Response Generation Using Adversarially Learned Latent Bag-of-Words
University of Waterloo, 2020
This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public.
Text Generation with Deep Variational GAN
ArXiv, 2021
Generating realistic sequences is a central task in many machine learning applications. There has been considerable recent progress on building deep generative models for sequence generation tasks. However, the issue of mode-collapsing remains a main issue for the current models. In this paper we propose a GANbased generic framework to address the problem of mode-collapse in a principled approach. We change the standard GAN objective to maximize a variational lower-bound of the log-likelihood while minimizing the Jensen-Shanon divergence between data and model distributions. We experiment our model with text generation task and show that it can generate realistic text with high diversity.
A Differentiable Generative Adversarial Network for Open Domain Dialogue
2019
This work presents a novel methodology to train open domain neural dialogue systems within the framework of Generative Adversarial Networks with gradient based optimization methods. We avoid the non-differentiability related to textgenerating networks approximating the word vector corresponding to each generated token via a top-k softmax. We show that a weighted average of the word vectors of the most probable tokens computed from the probabilities resulting of the top-k softmax leads to a good approximation of the word vector of the generated token. Finally we demonstrate through a human evaluation process that training a neural dialogue system via adversarial learning with this method successfully discourages it from producing generic responses. Instead it tends to produce more informative and variate ones.
Text Generation Based on Generative Adversarial Nets with Latent Variables
Advances in Knowledge Discovery and Data Mining, 2018
In this paper, we propose a model using generative adversarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative adversarial net. The use of high-level latent random variables is helpful to learn the data distribution and solve the problem that generative adversarial net always emits the similar data. We propose the VGAN model where the generative model is composed of recurrent neural network and VAE. The discriminative model is a convolutional neural network. We train the model via policy gradient. We apply the proposed model to the task of text generation and compare it to other recent neural network based models, such as recurrent neural network language model and Seq-GAN. We evaluate the performance of the model by calculating negative log-likelihood and the BLEU score. We conduct experiments on three benchmark datasets, and results show that our model outperforms other previous models.