Computed axial tomography tandem and ovoids (CATTO) dosimetry:Three-dimensional assessment of bladder and rectal doses (original) (raw)
Related papers
Asian Pacific Journal of Cancer Prevention, 2014
Background: Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Materials and Methods: Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned. All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Results: Mean doses received by 100% and 90% of the target volume were 4.24±0.63 and 4.9±0.56 Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were 2.88±0.72, 2.5±0.65 and 2.2±0.57 times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were 1.80±0.5, 1.48±0.41 and 1.35±0.37 times higher than ICRU rectal reference point. Conclusions: Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.
International Journal of Cancer Therapy and Oncology, 2015
Purpose: To assess the dosimetry to organs at risk (OARs) in lithotomy position with a planned time-dose pattern obtained from supine position. Methods: The sample consists of thirty patients with carcinoma of the uterine cervix, Stage II and III. Patients often feel discomfort in supine position (S position) when compared to lithotomy position (M position) due to relaxation of pelvic floor muscles after the insertion of applicator (tandem and ovoids) or before delivery of the treatment. Each patient was imaged with orthogonal X-ray radiographs simultaneously in two positions, i.e. S position and M position. Dwell time and dwell position pattern obtained from the optimized plan in S position was used to generate plan in M position. Following dose reference points (point A, pelvic wall points, bladder points, rectal, anorectum (AR point) and rectosigmoid (RS point) points) were identified for analysis in S and M positions. The dosimetric data for reference points generated by the Brachyvision TPS was analyzed. Results: Pelvic wall points registered lower doses in M position when compared to S position. Mean doses for right pelvic wall point (RPW) and left pelvic wall point (LPW) were reduced by-10.02 % and-11.5% in M position, respectively. International Commission on Radiation Units and Measurements (ICRU) bladder point also registered lower doses in M position with a mean dose of-6.8%. Rectal point showed dose reduction by mean of-6.4%. AR and RS points showed an increased dose in M position by a mean of 16.5% and 10%, respectively. Conclusion: Current dosimetry procedure serves as a model with time-dose pattern planned for S position, but delivered in M position, without dose optimization. Prioritization of comfort and position can be considered in conjunction with optimization of dose.
Asian Pacific journal of cancer prevention : APJCP, 2014
CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT). Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6 Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose (DMax) to rectum was the highest recorded dose at one of these five points. Using the HDR plus 2.6 brachytherapy t...
International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2018
Background: Treatment of Cervical cancer includes a combination of external beam radiotherapy (EBRT) with intracavitary brachytherapy (ICBT). ICBT helps to boost radiation dose to primary disease. Organs like rectum, bladder, sigmoid and small bowel lie close to the cervix region and these organs receive dose from EBRT as well as ICBT and we want to know the dose to these organ at risk (OAR). Materials & Methods: Dosimetric details of 174 ICBT applications done in 58 patients were retrospectively analysed. All patients received EBRT dose of 50.4 Gy in 28 fractions. All patients had ICBT, three sessions with 7 Gy prescribed to point A. Dosimetric data including dose to right and left point A and dose to OARs were recorded from Oncentra Planning System. Results: Mean dose to point A on right side was 6.89 Gy and left side was 6.91 Gy. Mean D2cc dose to rectum, bladder, sigmoid and small bowel was 3.5 Gy, 5.25 Gy, 4.75 Gy and 4.2 Gy respectively. Mean EQD2 dose combining EBRT and ICBT in point A was 78.7 Gy on right side and 79 Gy on left side. Mean EQD2 doses to D2cc of rectum, bladder, sigmoid and small bowel was 62 Gy, 74.4 Gy, 70.5 Gy and 66.5 Gy respectively. Conclusion: From the results of this dosimetric study it is evident that OARs like rectum, sigmoid, bladder & bowel are receiving only acceptable doses of radiation using point A prescribed CT based ICBT planning. Hence with regards to OAR doses, CT based ICBT planning with dose prescribed to point A is a feasible option.
Asian Pacific Journal of Cancer Care
Purpose: Dosimetric analysis and effect of different definitions of prescription point “A” to OAR in high dose rate brachytherapy for cervical cancer. Methods and Materials: This retrospective comparative dosimetric study is based on the data of 25 patients with histologically proven cervical carcinoma treated with HDR (high-dose-rate) brachytherapy. Patients received 21 Gy in three fractions (7.0 Gy X three fractions) to point A (AMAN, revised Manchester definition). Further, the patients were replanned with the new point A (AABS) as per the American Brachytherapy Society/ICRU 89 which is defined on CT images. The data compiled was then compared with the data observed from point A (AMAN). Results: When AMAN normalization method was used, the mean dose to the bladder at 0.1cc, 1cc, 2cc and 5cc obtained was 1121.2±54.5, 1058.7±44.1, 875.0±38.6, 780.5±35.9, and 641.2±29.5 cGy respectively. Likewise, using the ICRU-89 point A (ABS) normalization method, the mean dose to 0.1 cc, 0.2 cc,...
Journal of Contemporary Brachytherapy, 2013
Purpose: Distension and shape of urinary bladder may vary during intracavitary brachytherapy (ICBT) for cervical cancer, significantly affecting doses to bladder, rectum , sigmoid colon and small intestine and consequently late radiation toxicities. This study is to evaluate the effects of different fixed volume bladder distention on dosimetry, assessed by three dimensional image based planning, in different organs at risk during the treatment of cervical cancer with ICBT. Material and methods: Forty seven cervical cancer patients (stage IB to IVA) were qualified for ICBT following external beam radiotherapy. Urinary bladder was distended with different volumes of normal saline instilled by a Foley's catheter. Planning CT scans were performed after insertion of applicators and three dimensional treatment planning was done on Brachyvision ® treatment planning system (Varian Medical Systems, Palo Alto, CA). Dose volume histograms were analyzed. Bladder, rectum, sigmoid colon and small intestine doses were collected for individual plans and compared, based on the amount of bladder filling. Results: Mean dose to the bladder significantly decreased with increased bladder filling. However, doses to the small volumes (0.1 cc, 1 cc, 2 cc) which are relevant for brachytherapy, did not change significantly with bladder filling for bladder, rectum or sigmoid colon. Nevertheless, all dose values of small intestine are decreased significantly with bladder filling. Conclusions: Bladder distension has no significant effect on doses received during brachytherapy by relevant volumes of bladder, rectum and sigmoid colon except intestine where values are decreased with bladder distension. A larger study with clinical correlation of late toxicities is essential for proper evaluation of this strategy.
International Journal of Radiation Oncology*Biology*Physics, 2008
Purpose: To quantify the effect of bladder volume on the dose distribution during intracavitary brachytherapy for cervical cancer. Methods and Patients: The study was performed on 10 women with cervical cancer who underwent brachytherapy treatment. After insertion of the brachytherapy applicator, the patients were transferred to the computed tomography unit. Two sets of computed tomography slices were taken, including the pelvis, one with an empty bladder and one after the bladder was filled with saline. The target and critical organs were delineated by the radiation oncologist and checked by the expert radiologist. The radiotherapy plan was run on the Plato planning system, version 14.1, to determine the dose distributions, dose-volume histograms, and maximal dose points. The doses and organ volumes were compared with the Wilcoxon signed ranks test on a personal computer using the Statistical Package for Social Sciences, version 11.0, statistical program. Results: No significant difference regarding the dose distribution and target volumes between an empty or full bladder was observed. Bladder fullness significantly affected the dose to the small intestine, rectum, and bladder. The median of maximal doses to the small intestine was significantly greater with an empty bladder (493 vs. 284 cGy). Although dosimetry revealed lower doses for larger volumes of bladder, the median maximal dose to the bladder was significantly greater with a full bladder (993 vs. 925 cGy). The rectal doses were also affected by bladder distension. The median maximal dose was significantly lower in the distended bladder (481vs. 628 cGy). Conclusions: Bladder fullness changed the dose distributions to the bladder, rectum, and small intestine. The clinical importance of these changes is not known and an increase in the use of three-dimensional brachytherapy planning will highlight the answer to this question. Ó 2008 Elsevier Inc.
Radiotherapy and Oncology, 2001
A modern approach in treatment planning for cervix carcinoma is based on a series of computed tomography (CT) sections and 3D dose computation. When these techniques were not yet available, dose evaluation was based on orthogonal radiographs. The CT based planning provides information on target and organ volumes and dose-volume histograms. The radiography based planning provides only dimensions and doses at selected points. The aim of the presented study is to correlate the information obtained with the two approaches for high dose-rate (HDR) brachytherapy of cervix carcinoma. For the study 28 patients with 35 applications receiving HDR treatment with Ir-192 were investigated. The planning system PLATO (Nucletron) was used. The different aspects of available data, results and inaccuracies regarding quality assurance were looked at. From the CT based planning, the volume, location and dose-volume histograms were calculated for the CTV, rectum and bladder. From the radiography-based planning, the dose to point A (prescription), point B, rectum and bladder ICRU reference points [14], points related to the bony structures could be evaluated as well as volumes receiving different dose levels. These two sets of information were compared and following mean values derived. For a dose prescription of 7 Gy at point A, as an average, 83% (44 cm(3)) of the clinical target volume (CTV) receives at least 7 Gy. The mean dose at the rectum ICRU reference point is 4.3 Gy, and 12% (9 cm(3)) of the rectum is encompassed by the 4.3 Gy isodose. The mean dose at the bladder ICRU reference point is 5.8 Gy, and 8% (16 cm(3)) of the bladder is encompassed by the 5.8 Gy isodose. The maximum dose to the rectum is 1.5 times higher than the dose at the ICRU reference point, and for the bladder 1.4 times higher. Uncertainties caused by the reconstruction of the applicator and merging of isodoses could be evaluated. The subdivision of different approaches and the transfer from point doses to volumes in treatment planning is possible and practical for the treatment of cervix carcinoma in brachytherapy.
PubMed, 2008
Introduction: Brachytherapy is an integral part in the treatment of cervical uteri cancer patients. Orthogonal treatment planning is the standard mode of calculation based on reference points. Introduction of the innovative 3-D computer based treatment planning allows accurate calculation based on volumetric information as regards the target volume and organs at risk (OAR). Also provide dose volume histogram (DVH) for proper estimation of the dose in relation to the volume. Aim: To correlate and compare the information obtained from the two approaches for high dose rate brachytherapy of cervical uteri cancer; the orthogonal conventional method and the computerized tomography (CT) three dimensions (3D) based calculation method in relation to the target and organ at risk (OAR). Methods: From 6 patients of cervical uteri cancer, 21 applications with orthogonal planning using the Brachy Vision treatment planning system version 7.3.10 were performed. In 10 applications; comparison between orthogonal and CT based planning was done. In orthogonal planning; the dose to point A, rectum and bladder were defined according to the American Brachytherapy Society (ABS) recommendation. From the CT based planning the target volume and dose volume histogram lpar;DVH) were calculated for the clinical target volume (CTV), rectum and bladder. From these two sets, information was obtained and compared and mean values were derived. Results: For dose prescription at point A, an average of 63.5% of CTV received the prescribed dose. The mean ICRU dose to the bladder point is 2.9 Gy+/-1.2 SD (Standard Deviation) and 17% of the bladder volume derived from CT was encompassed by 2.9 Gy isodose line. The mean ICRU dose at the rectum point is 3.4 Gy+/-1.2 SD and 21% of the rectum volume from CT was encompassed by 3.4 Gy isodose line. The maximum dose to the rectum and the bladder derived from the CT and compared to the maximal dose at ICRU is 1.7 and 2.8 times higher than the orthogonal reference points; with the corresponding p value of (p=0.53 and p=0.005) for the rectum and the bladder respectively. Conclusions: CT based treatment planning for HDR brachytherapy of cervical uteri cancer is reliable and more accurate in definition and calculation of the dose to the target as well as the critical organs. It allows dose calculation based on the actual volume rather than points or bony landmarks.