Ab initio calculations of CaZrO3, BaZrO3, PbTiO3 and SrTiO3 (001), (011) and (111) surfaces as well as their (001) interfaces (original) (raw)

Abstract

We carried out ab initio calculations for technologically important ABO 3 perovskites, like, CaZrO 3 , BaZrO 3 , PbTiO 3 and SrTiO 3 , their (001), (011) and (111) surfaces as well as (001) interfaces. For ABO 3 perovskites, such as CaZrO 3 , BaZrO 3 , PbTiO 3 and SrTiO 3 , in most of cases, all upper (001) surface layer atoms relax inwards, all second surface layer atoms relax outwards, and again, all third surface layer atoms relax inwards. Our calculated CaZrO 3 , BaZrO 3 , PbTiO 3 and SrTiO 3 (001) surface energies are almost equivalent for both AO and BO 2-terminations, and always considerably smaller than the (011) and especially (111) surface energies. Our calculated BaTiO 3 /SrTiO 3 , SrZrO 3 /PbZrO 3 and PbTiO 3 /SrTiO 3 (001) heterostructure band gap depends much more strongly from the termination of the upper augmented layer (AO or BO 2) than from the number on the substrate augmented layers.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (49)

  1. C. Noguera, Polar oxide surfaces. J. Phys: Condens. Matter. 12, R367 (2000). DOI: 10.1088/ 0953-8984/12/31/201.
  2. R. A. P. Ribeiro, J. Andr es, E. Longo, and S. R. Lazaro, Magnetism and multiferroelectric properties at MnTiO 3 surfaces: A DFT study. Appl. Surf. Sci. 452, 463 (2018). DOI: 10.1016/j.apsusc.2018.05.067.
  3. R. I. Eglitis, and A. I. Popov, Systematic trends in (001) surface ab initio calculations of ABO 3 perovskites. J. Saudi Chem. Soc. 22 (4), 459 (2018). DOI: 10.1016/j.jscs.2017.05.011.
  4. C. G. Ma, V. Krasnenko, and M. G. Brik, First-principles calculations of different (001) sur- face terminations of three cubic perovskites CsCaBr 3 , CsGeBr 3 and CsSnBr 3 . J. Phys. Chem. Solids. 115, 289 (2018). DOI: 10.1016/j.jpcs.2017.12.052.
  5. B. Luo et al., Structural and electronic properties of cubic KNbO 3 (001) surfaces: A first- principles study. Appl. Surf. Sci. 351, 558 (2015). DOI: 10.1016/j.apsusc.2015.05.140.
  6. H. Y. Hwang et al., Emergent phenomena at oxide interfaces. Nat. Mater. 11 (2), 103 (2012). DOI: 10.1038/nmat3223.
  7. Y. A. Mastrikov et al., Surface termination effects on the oxygen reduction reaction rate at fuel cell cathodes. J. Mater. Chem. A. 6 (25), 11929 (2018). DOI: 10.1039/C8TA02058B.
  8. R. I. Eglitis, and A. I. Popov, Ab initio calculations for the polar (001) surfaces of YAlO 3 . Nucl. Instrum. Methods Phys. Res. B. 434, 1 (2018). DOI: 10.1016/j.nimb.2018.07.032.
  9. M. F. Hoedl et al., Impact of point defects on the elastic properties of BaZrO 3 : A compre- hensive insight from experiments and ab initio calculations. Acta Mater. 160, 247 (2018). DOI: 10.1016/j.actamat.2018.08.042.
  10. R. I. Eglitis, and E. A. Kotomin, Ab initio calculations of Nb doped SrTiO 3 . Phys. B: Condens. Matter. 405 (15), 3164 (2010). DOI: 10.1016/j.physb.2010.04.033.
  11. M. Dawber, K. M. Rabe, and J. F. Scott, Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77(4), 1083 (2005). DOI: 10.1103/RevModPhys.77.1083.
  12. S. Gerhold, M. Wang, M. Schmid, and U. Diebold, Stoichiometry-driven switching between surface reconstructions on SrTiO 3 (001) surfaces. Surf. Sci. 621, L1 (2014). DOI: 10.1016/ j.susc.2013.10.015.
  13. Y. Lin et al., The 2 x 2 reconstructions on the SrTiO 3 (001) surface: A combined scanning tunnelling microscopy and density functional theory study. Surf. Sci. 605 (17-18), L51 (2011). DOI: 10.1016/j.susc.2011.06.001.
  14. R. I. Eglitis, and D. Vanderbilt, Ab initio calculations of BaTiO 3 and PbTiO 3 (001) and (011) surface structures. Phys. Rev. B. 76, 155439 (2007).
  15. E. A. Kotomin, R. I. Eglitis, J. Maier, and E. Heifets, Calculations of the atomic and elec- tronic structure for SrTiO 3 perovskite thin films. Thin Solid Films. 400 (1-2), 76 (2001). DOI: 10.1016/S0040-6090(01)01454-7.
  16. M. G. Brik, C. G. Ma, and V. Krasnenko, First-principles calculations of the structural and electronic properties of the cubic CaZrO 3 (001) surfaces. Surf. Sci. 608, 146 (2013). DOI: 10.1016/j.susc.2012.10.004.
  17. E. A. Kotomin et al., The electronic properties of an oxygen vacancy at ZrO 2 -terminated (001) surfaces of a cubic PbZrO 3 : Computer simulations from the first principles. Phys. Chem. Chem. Phys. 10 (29), 4258 (2008). DOI: 10.1039/b802740d.
  18. J. R. Sambrano, V. M. Longo, E. Longo, and C. A. Taft, Electronic and structural properties of the (001) SrZrO 3 surface. J Mol. Struct. THEOCHEM. 813 (1-3), 49 (2007). DOI: 10.1016/j.theochem.2007.02.022.
  19. R. I. Eglitis, First-principles calculations of BaZrO 3 (001) and (011) surfaces. J. Phys. Condens. Matter. 19, 356004 (2007). DOI: 10.1088/0953-8984/19/35/356004.
  20. E. S. Goh, L. H. Ong, T. L. Yoon, and K. H. Chew, Structural relaxation of BaTiO 3 slab with tetragonal (100) surfaces: Ab initio comparison of different thickness. Curr. Appl. Phys. 16 (11), 1491 (2016). DOI: 10.1016/j.cap.2016.08.024.
  21. R. I. Eglitis, and D. Vanderbilt, First-principles calculations of atomic and electronic struc- ture of SrTiO 3 (001) and (011) surfaces. Phys. Rev. B. 77, 195408 (2008).
  22. A. M. Kolpak et al., Evolution of the structure and thermodynamic stability of the BaTiO 3 (001) surface. Phys. Rev. Lett. 101 (3), 036102 (2008). DOI: 10.1103/ PhysRevLett.101.036102.
  23. R. I. Eglitis, Theoretical modelling of the energy surface (001) and topology of CaZrO 3 per- ovskite. Ferroelectrics. 483 (1), 75 (2015). DOI: 10.1080/00150193.2015.1058690.
  24. N. Bickel, G. Schmidt, K. Heinz, and K. M€ uller, Ferroelectric relaxation of the SrTiO 3 (100) surface. Phys. Rev. Lett. 62 (17), 2009 (1989). DOI: 10.1103/PhysRevLett.62.2009.
  25. T. Hikita, T. Hanada, M. Kudo, and M. Kawai, Structure and the electronic state of the TiO 2 and SrO terminated SrTiO 3 (100) surfaces. Surf. Sci. 287-288, 377 (1993). DOI: 10.1016/0039-6028(93)90806-U.
  26. J. M. Zhang et al., Ab initio modelling of CaTiO 3 (110) polar surfaces. Phys. Rev. B. 76, 115426 (2007).
  27. R. I. Eglitis, and M. Rohlfing, First-principles calculations of the atomic and electronic structure of SrZrO 3 and PbZrO 3 (001) and (011) surfaces. J. Phys: Condens. Matter. 22, 415901 (2010). DOI: 10.1088/0953-8984/22/41/415901.
  28. H. Chen, Y. Xie, G. H. Zhang, and H. T. Yu, A first-principles investigation of the stabil- ities and electronic properties of SrZrO 3 (110) (1 x 1) polar terminations. J. Phys: Condens. Matter. 26, 395002 (2014). DOI: 10.1088/0953-8984/26/39/395002.
  29. E. Heifets, and H. J and Merinov B, Density functional simulation of the BaZrO 3 (011) sur- face structure. Phys. Rev B. 75, 115431 (2007).
  30. Y. Xie et al., First-principles investigation of stability and structural properties of the BaTiO 3 (110) polar surface. J. Phys. Chem. C. 111 (17), 6343 (2007). DOI: 10.1021/ jp0658997.
  31. J. Wang, G. Tang, and X. S. Wu, Thermodynamic stability of BaTiO3 (110) surfaces. Phys. Status Solidi B. 249 (4), 796 (2012). DOI: 10.1002/pssb.201147358.
  32. R. I. Eglitis, First-principles calculations of the atomic and electronic structure of CaTiO 3 (111) surfaces. Ferroelectrics. 424 (1), 1 (2011). DOI: 10.1080/00150193.2011.623620.
  33. R. I. Eglitis, Ab initio calculations of the atomic and electronic structure of BaZrO 3 (111) surfaces. Solid State Ionics. 230, 43 (2013). DOI: 10.1016/j.ssi.2012.10.023.
  34. R. I. Eglitis, Ab initio hybrid DFT calculations of BaTiO 3 , PbTiO 3 , SrZrO 3 and PbZrO 3 (111) surfaces. Appl. Surf. Sci. 358, 556 (2015). DOI: 10.1016/j.apsusc.2015.08.010.
  35. W. Liu, C. Wang, J. Cui, and Z. Y. Man, Ab initio calculations of the CaTiO 3 (111) polar surfaces. Solid State Commun. 149 (43-44), 1871 (2009). DOI: 10.1016/j.ssc.2009.08.006.
  36. R. I. Eglitis, Comparative ab initio calculations of SrTiO 3 and CaTiO 3 polar (111) surfaces. Phys. Status Solidi B. 252 (3), 635 (2015).
  37. N. Sivadas, H. Dixit, V. R. Cooper, and D. Xiao, Thickness-dependent carrier density at the surface of SrTiO3 (111) slabs. Phys. Rev. B. 89, 075303 (2014).
  38. V. Stepkova, P. Marton, N. Setter, and J. Hlinka, Closed-circuit domain quadruplets in BaTiO 3 nanorods embedded in a SrTiO 3 film. Phys. Rev. B. 89, 060101 (2014).
  39. Z. Bi et al., Radiation damage in heteroepitaxial BaTiO 3 thin films on SrTiO 3 under Ne ion irradiation. J. Appl. Phys. 113 (2), 023513 (2013). : DOI: 10.1063/1.4775495.
  40. S. Piskunov, and R. I. Eglitis, First principles hybrid DFT calculations of BaTiO 3 /SrTiO 3 (001) interface. Solid State Ionics. 274, 29 (2015). DOI: 10.1016/j.ssi.2015.02.020.
  41. S. Piskunov, and R. I. Eglitis, Comparative ab initio calculations of SrTiO 3 /BaTiO 3 and SrZrO 3 /PbZrO 3 (001) heterostructures. Nucl. Instrum. Meth. B. 374, 20 (2016).
  42. R. I. Eglitis, S. Piskunov, and Y. F. Zhukovskii, Ab initio calculations of PbTiO 3 /SrTiO 3 (001) heterostructures. Phys. Status Solidi C. 13, 913 (2016). DOI: 10.1002/pssc.201600074.
  43. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (7), 5648 (1993). DOI: 10.1063/1.464913.
  44. C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy for- mula into a functional of the electron density. Phys. Rev. B. 37 (2), 785 (1988). DOI: 10.1103/PhysRevB.37.785.
  45. R. Dovesi et al., CRYSTAL14 User's Manual (University of Torino: Torino, TO 2014).
  46. H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13 (12), 5188 (1976). DOI: 10.1103/PhysRevB.13.5188.
  47. S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Bulk properties and electronic structure of SrTiO 3 , BaTiO 3 , PbTiO 3 perovskites; an ab initio HF/DFT study. Comput. Mater. Sci. 29 (2), 165 (2004). DOI: 10.1016/j.commatsci.2003.08.036.
  48. R. I. Eglitis, Ab initio calculations of the atomic and electronic structure of SrZrO 3 (111) surfaces. Ferroelectrics. 436 (1), 5 (2012). DOI: 10.1080/10584587.2012.731341.
  49. G. Borstel, R. I. Eglitis, E. A. Kotomin, and E. Heifets, Modelling of defects and surfaces in perovskite ferroelectrics. Phys. Stat. Sol. (B). 236 (2), 253 (2003). DOI: 10.1002/ pssb.200301664.