A classical derivation of spacetime (original) (raw)

The four dimensional spacetime continuum, as originally conceived by Minkowski, has become the default framework within which to describe physical laws. Due to its fundamental nature, there have been various attempts to derive this structure from more fundamental physical principles. In this paper, we show how the Minkowski spacetime structure arises directly from the geometrical properties of three dimensional space when modeled by Clifford geometric algebra of three dimensions Cā„“(ā„œ 3). We find that a time-like dimension, as well as three spatial dimensions, arise naturally, as well as four additional degrees of freedom that we identify with spin. Within this expanded eightdimensional arena of spacetime, we find a generalisation of the invariant interval and the Lorentz transformations, with standard results returned as special cases. The power of this geometric approach is shown by the derivation of the fixed speed of light, the laws of special relativity and the form of Maxwell's equations, without any recourse to physical arguments. We also produce a unified treatment of energy-momentum and spin, as well as predicting a new class of physical effects and interactions.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact