Some New Observations and Results for Convex Contractions of Istratescu’s Type (original) (raw)
Abstract
The purpose is to ensure that a continuous convex contraction mapping of order two in b-metric spaces has a unique fixed point. Moreover, this result is generalized for convex contractions of order n in b-metric spaces and also in almost and quasi b-metric spaces.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (39)
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 1989, 30, 26-37.
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5-11.
- Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak φ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337-346.
- Aydi, H.; Karapinar, E.; Bota, M.F.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [CrossRef]
- Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [CrossRef]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [CrossRef]
- Istratescu, V.I. Some fixed point theorems for convex contraction mappings and convex non-expansive mapping. Libertas Mathematica 1981, 1, 151-163.
- Dolićanin, D.D.; Mohsin, B.B. Some new fixed point results for convex contractions in b-metric spaces. Univ. Thought Pub. Nat. Sci. 2019, 9, 67-71. [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153-2163. [CrossRef]
- Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256. [CrossRef]
- Mitrović, Z.D. A note on the result of Suzuki, Miculescu and Mihail. J. Fixed Point Thery Appl. 2019, 21. [CrossRef]
- Mlaiki, N.; Kukić, K.; Gardašević-Filipović, M.; Aydi, H. On almost b-metric spaces and related fixed points results. Axioms 2019, 8, 70. [CrossRef]
- Agarwal, R.P.; Karapinar, E.; O'Regan, D.; de Hierro, A.F.R.L. Fixed Point Theory in Metric Type Spaces; Springer International Publishing: Basel, Switzerland, 2015.
- Aydi, H.; Jellali, M.; Karapinar, E. On fixed point results for α-implicit contractions in quasi-metric spaces and consequences. Nonlinear Anal. Model. Control. 2016, 21, 40-56. [CrossRef]
- Alghamdi, M.A.; Alnafei, S.H.; Radenović, S.; Shahzad, N. Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. Appl. Math. Lett. 2011, 24, 2162-2166.
- Alghamdi, M.A.; Alnafei, S.H.; Radenović, S.; Shahzad, N. Fixed point theorems for convex contraction mappings on cone metric spaces. Math. Comput. Model. 2011, 54, 2020-2026. [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Aydi, H.; Alsamir, H. Fixed point results for multi-valued contractions in b-metric spaces and an application. Mathematics 2018, 7, 132. [CrossRef]
- Reich, S. Some remarks concerning contraction mappings. Canad. Math. Bull. 1971, 14, 121-124. [CrossRef]
- Eke, K.S. ; Olisama, V.O.; Bishop, S.A. Some fixed point theorems for convex contractive mappings in complete metric spaces with applications. Cogen Math. Stat., 2019, 6, 1655870. [CrossRef]
- Georgescu, F. IFSs consisting of generalized convex contractions. An. St. Univ. Ovidius Constanta 2017, 25, 77-86. [CrossRef]
- Istratescu, V.I. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters-I. Annali Mat. Pura Appl. 1982, 130, 89-104. [CrossRef]
- Istratescu, V.I. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters-II. Annali Mat. Pura Appl. 1983, 130, 327-362. [CrossRef]
- Latif, A.; Ninsri, A.; Sintunavarat, W. The (α, β) -generalized convex contractive condition with approximate fixed point results and some consequence. Fixed Point Theory Appl. 2016, 2016, 58. [CrossRef]
- Karapinar, E.; Czerwik, S.; Aydi, H. (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [CrossRef]
- Miandaragh, M.A.; Postolache, M.; Rezapour, S. Aproximate fixed points of generalized convex contractions. Fixed Point Theory Appl. 2013, 2013, 255. [CrossRef]
- Ramezani, M. Orthogonal metric space and convex contractions. Int. J. Nonlinear Anal. Appl. 2015, 6, 127-132.
- Aydi, H.; Felhi, A.; Karapinar, E.; Sahmim, S. A Nadler-type fixed point theorem in dislocated spaces and applications. Miscolc Math. Notes 2018, 19, 111-124. [CrossRef]
- Singh, Y.M.; Khan, M.S.; Kang, S.M. F-convex contraction via admissible mapping and related fixed point theorems with an application. Mathematics 2018, 6, 105. [CrossRef]
- Bisht, R.K.; Rakočević, V. Fixed Points of Convex and Generalized Convex Contractions; Rendiconti del Circolo Matematico di Palermo Series 2; Springer: Berlin, Germany, 2018. [CrossRef]
- Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer International Publishing Switzerland: Bazel, Switzerland, 2014.
- Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011 62, 4222-4229. [CrossRef]
- Gu, F.; Shatanawi, W. Some new results on common coupled fixed points of two hybrid pairs of mappings in partial metric spaces. J. Nonlinear Funct. Anal. 2019, 13. [CrossRef]
- Tahat, N.; Aydi, H.; Karapinar, E.; Shatanawi, W. Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. 2012, 2012, 48.
- Collaco, P.; Silva, E.J.C. A complete comparison of 25 contraction conditions. Nonlinear Anal. 1997, 30, 471-476.
- Rhoades, B.E. Comparison of various definitions of comapison of various definitions of contractive mappings. Trans. American Math. Soc. 1977, 226, 257-290. [CrossRef]
- Jntschi, L.; Balint, D.; Bolboacs, S.D. Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error. Comput. Math. Methods Med. 2016, 2016, 8578156. [CrossRef]
- Mitrović, Z.D. An Extension of Fixed Point Theorem of Sehgal in b-Metric Spaces. Comm. Appl. Nonlinear Anal. 2018, 25, 54-61.
- Reich S.; Zaslavski, A.J. Well-posedness of fixed point problems. Far East J. Math. Sci. 2001, 41, 393-401.
- Reich S.; Zaslavski, A.J. The set of noncontractive mappings is σ-porous in the space of all nonexpansive mappings. C. R. Acad. Sci. Paris 2001, 333, 539-544. [CrossRef]