Some New Observations and Results for Convex Contractions of Istratescu’s Type (original) (raw)

Abstract

The purpose is to ensure that a continuous convex contraction mapping of order two in b-metric spaces has a unique fixed point. Moreover, this result is generalized for convex contractions of order n in b-metric spaces and also in almost and quasi b-metric spaces.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (39)

  1. Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 1989, 30, 26-37.
  2. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5-11.
  3. Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak φ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337-346.
  4. Aydi, H.; Karapinar, E.; Bota, M.F.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [CrossRef]
  5. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [CrossRef]
  6. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [CrossRef]
  7. Istratescu, V.I. Some fixed point theorems for convex contraction mappings and convex non-expansive mapping. Libertas Mathematica 1981, 1, 151-163.
  8. Dolićanin, D.D.; Mohsin, B.B. Some new fixed point results for convex contractions in b-metric spaces. Univ. Thought Pub. Nat. Sci. 2019, 9, 67-71. [CrossRef]
  9. Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153-2163. [CrossRef]
  10. Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256. [CrossRef]
  11. Mitrović, Z.D. A note on the result of Suzuki, Miculescu and Mihail. J. Fixed Point Thery Appl. 2019, 21. [CrossRef]
  12. Mlaiki, N.; Kukić, K.; Gardašević-Filipović, M.; Aydi, H. On almost b-metric spaces and related fixed points results. Axioms 2019, 8, 70. [CrossRef]
  13. Agarwal, R.P.; Karapinar, E.; O'Regan, D.; de Hierro, A.F.R.L. Fixed Point Theory in Metric Type Spaces; Springer International Publishing: Basel, Switzerland, 2015.
  14. Aydi, H.; Jellali, M.; Karapinar, E. On fixed point results for α-implicit contractions in quasi-metric spaces and consequences. Nonlinear Anal. Model. Control. 2016, 21, 40-56. [CrossRef]
  15. Alghamdi, M.A.; Alnafei, S.H.; Radenović, S.; Shahzad, N. Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. Appl. Math. Lett. 2011, 24, 2162-2166.
  16. Alghamdi, M.A.; Alnafei, S.H.; Radenović, S.; Shahzad, N. Fixed point theorems for convex contraction mappings on cone metric spaces. Math. Comput. Model. 2011, 54, 2020-2026. [CrossRef]
  17. Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Aydi, H.; Alsamir, H. Fixed point results for multi-valued contractions in b-metric spaces and an application. Mathematics 2018, 7, 132. [CrossRef]
  18. Reich, S. Some remarks concerning contraction mappings. Canad. Math. Bull. 1971, 14, 121-124. [CrossRef]
  19. Eke, K.S. ; Olisama, V.O.; Bishop, S.A. Some fixed point theorems for convex contractive mappings in complete metric spaces with applications. Cogen Math. Stat., 2019, 6, 1655870. [CrossRef]
  20. Georgescu, F. IFSs consisting of generalized convex contractions. An. St. Univ. Ovidius Constanta 2017, 25, 77-86. [CrossRef]
  21. Istratescu, V.I. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters-I. Annali Mat. Pura Appl. 1982, 130, 89-104. [CrossRef]
  22. Istratescu, V.I. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters-II. Annali Mat. Pura Appl. 1983, 130, 327-362. [CrossRef]
  23. Latif, A.; Ninsri, A.; Sintunavarat, W. The (α, β) -generalized convex contractive condition with approximate fixed point results and some consequence. Fixed Point Theory Appl. 2016, 2016, 58. [CrossRef]
  24. Karapinar, E.; Czerwik, S.; Aydi, H. (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [CrossRef]
  25. Miandaragh, M.A.; Postolache, M.; Rezapour, S. Aproximate fixed points of generalized convex contractions. Fixed Point Theory Appl. 2013, 2013, 255. [CrossRef]
  26. Ramezani, M. Orthogonal metric space and convex contractions. Int. J. Nonlinear Anal. Appl. 2015, 6, 127-132.
  27. Aydi, H.; Felhi, A.; Karapinar, E.; Sahmim, S. A Nadler-type fixed point theorem in dislocated spaces and applications. Miscolc Math. Notes 2018, 19, 111-124. [CrossRef]
  28. Singh, Y.M.; Khan, M.S.; Kang, S.M. F-convex contraction via admissible mapping and related fixed point theorems with an application. Mathematics 2018, 6, 105. [CrossRef]
  29. Bisht, R.K.; Rakočević, V. Fixed Points of Convex and Generalized Convex Contractions; Rendiconti del Circolo Matematico di Palermo Series 2; Springer: Berlin, Germany, 2018. [CrossRef]
  30. Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer International Publishing Switzerland: Bazel, Switzerland, 2014.
  31. Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011 62, 4222-4229. [CrossRef]
  32. Gu, F.; Shatanawi, W. Some new results on common coupled fixed points of two hybrid pairs of mappings in partial metric spaces. J. Nonlinear Funct. Anal. 2019, 13. [CrossRef]
  33. Tahat, N.; Aydi, H.; Karapinar, E.; Shatanawi, W. Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. 2012, 2012, 48.
  34. Collaco, P.; Silva, E.J.C. A complete comparison of 25 contraction conditions. Nonlinear Anal. 1997, 30, 471-476.
  35. Rhoades, B.E. Comparison of various definitions of comapison of various definitions of contractive mappings. Trans. American Math. Soc. 1977, 226, 257-290. [CrossRef]
  36. Jntschi, L.; Balint, D.; Bolboacs, S.D. Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error. Comput. Math. Methods Med. 2016, 2016, 8578156. [CrossRef]
  37. Mitrović, Z.D. An Extension of Fixed Point Theorem of Sehgal in b-Metric Spaces. Comm. Appl. Nonlinear Anal. 2018, 25, 54-61.
  38. Reich S.; Zaslavski, A.J. Well-posedness of fixed point problems. Far East J. Math. Sci. 2001, 41, 393-401.
  39. Reich S.; Zaslavski, A.J. The set of noncontractive mappings is σ-porous in the space of all nonexpansive mappings. C. R. Acad. Sci. Paris 2001, 333, 539-544. [CrossRef]