Sucrose thresholds and genetic polymorphisms of sweet and bitter taste receptor genes in children (original) (raw)

Individual Differences Among Children in Sucrose Detection Thresholds: Relationship With Age, Gender, and Bitter Taste Genotype

Nursing research

Little research has focused on whether there are individual differences among children in their sensitivity to sweet taste and, if so, the biological correlates of such differences. Our goal was to understand how variations in children's sucrose detection thresholds relate to their age and gender, taste genotype, body composition, and dietary intake of added sugars. Sucrose detection thresholds in 7- to 14-year-old children were tested individually using a validated, two-alternative, forced-choice, paired-comparison tracking method. Five genetic variants of taste genes were assayed: TAS1R3 and GNAT3 (sweet genes; one variant each) and the bitter receptor gene TAS2R38 (three variants). All children were measured for body weight and height. A subset of these children were measured for the percentage of body fat and waist circumference and provided added sugar intake by 24-hour dietary recall. Sucrose thresholds ranged from 0.23 to 153.8 mM with most of the children completing the ...

Bitter taste phenotype and body weight predict children's selection of sweet and savory foods at a palatable test-meal

Appetite, 2014

Previous studies show that children who are sensitive to the bitter taste of 6-n-propylthiouracil (PROP) report more frequent intake of sweets and less frequent intake of meats (savory fats) relative to children who are PROP insensitive. Laboratory studies are needed to confirm these findings. In this study, seventy-nine 4-to 6-year-olds from diverse ethnicities attended four laboratory sessions, the last of which included a palatable buffet consisting of savory-fats (e.g. pizza), sweet-fats (e.g. cookies, cakes), and sweets (e.g. juices, candies). PROP phenotype was classified by two methods: 1) a common screening procedure to divide children into tasters and nontasters, and 2) a three-concentration method used to approximate PROP thresholds. Height and weight were measured and saliva was collected for genotyping TAS2R38, a bitter taste receptor related to the PROP phenotype. Data were analyzed by General Linear Model ANOVA with intake from savory fats, sweet-fats, and sweets as dependent variables and PROP status as the independent variable. BMI z-score, sex, age, and ethnicity were included as covariates. Adjusted energy intake from the food group "sweets" at the test-meal was greater for tasters than for nontasters. PROP status did not influence children's adjusted intake of savory-fats, but BMI z-score did. The TAS2R38 genotype did not impact intake at the test-meal. At a palatable buffet, PROP taster children preferentially consumed more sweets than nontaster children, while heavier children consumed more savory fats. These findings may have implications for understanding differences in susceptibility to hyperphagia.

Variation in the TAS1R2 Gene, Sweet Taste Perception and Intake of Sugars

Journal of Nutrigenetics and Nutrigenomics, 2015

Background/Aims: To determine whether variation in the TAS1R2 gene affects sucrose taste perception and sugar intake. Methods: Participants were men (n = 238) and women (n = 458) aged 20-29 years. A subset (n = 95) with body mass index (BMI) data available completed a sensory analysis study. A food frequency questionnaire assessed dietary intake, and eight polymorphisms were genotyped (rs12033832, rs12137730, rs35874116, rs3935570, rs4920564, rs4920566, rs7513755 and rs9701796). Sucrose taste thresholds were determined by staircase procedure (solutions: 9 × 10 -6 to 0.5 mol/l). Suprathreshold sensitivity to 0.01-1.0 mol/l sucrose solutions was assessed using general Labeled Magnitude Scales. Results: A significant genotype-BMI interaction was observed for rs12033832 (G>A) for suprathreshold sensitivity (p = 0.01) and sugar intake (p = 0.003). Among participants with a BMI ≥ 25, G allele carriers had lower sensitivity ratings (mean incremental area under the taste sensitivity curve ± SE; GG/GA 54.4 ± 4.1 vs. AA 178.5 ± 66.6; p = 0.006), higher thresholds (GG/GA 9.3 ± 1.1 vs. AA 4.4 ± 4.3 mmol/l; p = 0.004) and consumed more sugars (GG/GA 130 ± 4 vs. AA 94 ± 13 g/ day; p = 0.009). G allele carriers with a BMI <25 had lower thresholds (GG/GA 8.6 ± 0.5 vs. AA 16.7 ± 5.7 mmol/l; p = 0.02) and consumed less sugars (GG/GA 122 ± 2 vs. AA 145 ± 8 g/day; p = 0.004). Conclusion: The rs12033832 single nucleotide polymorphism in TAS1R2 is associated with sucrose taste and sugar intake, but the effect differs depending on BMI.

Association between Common Variation in Genes Encoding Sweet Taste Signaling Components and Human Sucrose Perception

Chemical Senses, 2010

Variation in taste perception of different chemical substances is a well-known phenomenon in both humans and animals. Recent advances in the understanding of sweet taste signaling have identified a number of proteins involved in this signal transduction. We evaluated the hypothesis that sequence variations occurring in genes encoding taste signaling molecules can influence sweet taste perception in humans. Our population consisted of unrelated individuals (n = 160) of Caucasian, African-American, and Asian descent. Threshold and suprathreshold sensitivities of participants for sucrose were estimated using a sorting test and signal detection analysis that produced cumulative R-index area under the curve (AUC) scores. Genetic association analysis revealed significant correlation of sucrose AUC scores with genetic variation occurring in the GNAT3 gene (single point P = 10 À3 to 10 À4 ), which encodes the taste-specific G a protein subunit gustducin. Subsequent sequencing identified additional GNAT3 variations having significant association with sucrose AUC scores. Collectively, GNAT3 polymorphisms explain 13% of the variation in sucrose perception. Our findings underscore the importance of common genetic variants influencing human taste perception.

Chem. Senses doi:10.1093/chemse/bjq063 Association between Common Variation in Genes Encoding Sweet Taste Signaling Components and Human Sucrose Perception

2010

Variation in taste perception of different chemical substances is a well-known phenomenon in both humans and animals. Recent advances in the understanding of sweet taste signaling have identified a number of proteins involved in this signal transduction. We evaluated the hypothesis that sequence variations occurring in genes encoding taste signaling molecules can influence sweet taste perception in humans. Our population consisted of unrelated individuals (n = 160) of Caucasian, African– American, and Asian descent. Threshold and suprathreshold sensitivities of participants for sucrose were estimated using a sorting test and signal detection analysis that produced cumulative R-index area under the curve (AUC) scores. Genetic association analysis revealed significant correlation of sucrose AUC scores with genetic variation occurring in the GNAT3 gene (single point P = 103 to 104), which encodes the taste-specific Ga protein subunit gustducin. Subsequent sequencing identified addition...

A matter of taste: genetic and environmental influences on responses to sweetness

2008

Diet is a major factor in the maintenance of health and the onset of many diseases of public health importance. Choice of food composing the diet is known to be largely influenced by sensory preferences. However, in many cases, it is unclear whether these preferences and dietary behaviors are innate or acquired. In conclusion, this work contributed to the understanding of the factors underlying human eating behavior. Genetic effects were shown to underlie the variation of many dietary traits, such as liking for sweet taste, use of sweet foods, and dieting behaviors. However, responses to salty taste were revealed to be mainly determined by environmental factors and thus should more easily be modifiable by dietary education, exposure, and learning than sweet taste preferences. Although additional studies are needed to characterize the genetic element located on chromosome 16 that influences the use-frequency of sweet foods, these results underline the importance of inherited factors on human eating behavior.

New insight into human sweet taste: a genome-wide association study of the perception and intake of sweet substances

The American Journal of Clinical Nutrition, 2019

Background: Individual differences in human perception of sweetness are partly due to genetics; however, which genes are associated with the perception and the consumption of sweet substances remains unclear. Objective: The aim of this study was to verify previous reported associations within genes involved in the peripheral receptor systems (i.e., TAS1R2, TAS1R3, and GNAT3) and reveal novel loci. Methods: We performed genome-wide association scans (GWASs) of the perceived intensity of 2 sugars (glucose and fructose) and 2 high-potency sweeteners (neohesperidin dihydrochalcone and aspartame) in an Australian adolescent twin sample (n = 1757), and the perceived intensity and sweetness and the liking of sucrose in a US adult twin sample (n = 686). We further performed GWASs of the intake of total sugars (i.e., total grams of all dietary mono-and disaccharides per day) and sweets (i.e., handfuls of candies per day) in the UK Biobank sample (n = ≤174,424 white-British individuals). All participants from the 3 independent samples were of European ancestry. Results: We found a strong association between the intake of total sugars and the single nucleotide polymorphism rs11642841 within the FTO gene on chromosome 16 (P = 3.8 × 10 −8) and many suggestive associations (P < 1.0 × 10 −5) for each of the sweet perception and intake phenotypes. We showed genetic evidence for the involvement of the brain in both sweet taste perception and sugar intake. There was limited support for the associations with TAS1R2, TAS1R3, and GNAT3 in all 3 European samples. Conclusions: Our findings indicate that genes additional to those involved in the peripheral receptor system are also associated with the sweet taste perception and intake of sweet-tasting foods. The functional potency of the genetic variants within TAS1R2, TAS1R3, and GNAT3 may be different between ethnic groups and this warrants further investigations.

Sweet Taste Perception is Associated with Body Mass Index at the Phenotypic and Genotypic Level

Twin research and human genetics : the official journal of the International Society for Twin Studies, 2016

Investigations on the relationship between sweet taste perception and body mass index (BMI) have been inconclusive. Here, we report a longitudinal analysis using a genetically informative sample of 1,576 adolescent Australian twins to explore the relationship between BMI and sweet taste. First, we estimated the phenotypic correlations between perception scores for four different sweet compounds (glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame) and BMI. Then, we computed the association between adolescent taste perception and BMI in early adulthood (reported 9 years later). Finally, we used twin modeling and polygenic risk prediction analysis to investigate the genetic overlap between BMI and sweet taste perception. Our findings revealed that BMI in early adulthood was significantly associated with each of the sweet perception scores, with the strongest correlation observed in aspartame with r = 0.09 (p = .007). However, only limited evidence of association wa...

Same genetic components underlie different measures of sweet taste preference1-3

2000

Background:Sweettastepreferencesaremeasuredbyseveraloften correlated measures. Objective: We examined the relative proportions of genetic and environmental effects on sweet taste preference indicators and their mutual correlations. Design: A total of 663 female twins (324 complete pairs, 149 monozygous and 175 dizygous pairs) aged 17-80 y rated the liking and intensity of a 20% (wt/vol) sucrose solution, reported the liking and the use-frequency of

Genetic Variations in Sweet Taste Receptor Gene Are Related to Chocolate Powder and Dietary Fiber Intake in Obese Children and Adolescents

Journal of personalized medicine, 2018

Childhood obesity is a major public health problem. It has a direct impact on the quality of life of children and adolescents, as well as on their future risk of developing chronic diseases. Dietary patterns rich in fats and sugars and lacking dietary fibers, vitamins, and minerals, as well as lack of physical exercise have been associated with the rise of obesity prevalence. However, factors that contribute to the preference for foods rich in these nutrients are not well established. Taste is recognized as an important predictor of food choices, and polymorphisms in taste-related genes may explain the variability of taste preference and food intake. The aim of this research is to evaluate the influence of polymorphisms of the sweet taste receptor geneon diet and metabolic profile in obese children and adolescents. A cross-sectional study with 513 obese children and adolescents and 135 normal-weight children was carried out. A molecular study was performed for the single nucleotide ...