Towards Mobile Edge Computing: Taxonomy, Challenges, Applications and Future Realms (original) (raw)

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

KSII Trans. Internet Inf. Syst., 2019

Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.

A Survey on Mobile Edge Computing

Mobile Edge Computing is an emerging technology that provides cloud and IT services within the close proximity of mobile subscribers. Traditional telecom network operators perform traffic control flow (forwarding and filtering of packets), but in Mobile Edge Computing, cloud servers are also deployed in each base station. Therefore, network operator has a great responsibility in serving mobile subscribers. Mobile Edge Computing platform reduces network latency by enabling computation and storage capacity at the edge network. It also enables application developers and content providers to serve context-aware services (such as collaborative computing) by using real time radio access network information. Mobile and Internet of Things devices perform computation offloading for compute intensive applications, such as image processing, mobile gaming, to leverage the Mobile Edge Computing services. In this paper, some of the promising real time Mobile Edge Computing application scenarios are discussed. Later on, a state-of-the-art research efforts on Mobile Edge Computing domain is presented. The paper also presents taxonomy of Mobile Edge Computing, describing key attributes. Finally, open research challenges in successful deployment of Mobile Edge Computing are identified and discussed.

Computing Offloading Strategy in Mobile Edge Computing Environment: A Comparison between Adopted Frameworks, Challenges, and Future Directions

Electronics

With the proliferation of the Internet of Things (IoT) and the development of wireless communication technologies such as 5G, new types of services are emerging and mobile data traffic is growing exponentially. The mobile computing model has shifted from traditional cloud computing to mobile edge computing (MEC) to ensure QoS. The main feature of MEC is to “sink” network resources to the edge of the network to meet the needs of delay-sensitive and computation-intensive services, and to provide users with better services. Computation offloading is one of the major research issues in MEC. In this paper, we summarize the state of the art in task offloading in MEC. First, we introduce the basic concepts and typical application scenarios of MEC, and then we formulate the task offloading problem. In this paper, we analyze and summarize the state of research in the industry in terms of key technologies, schemes, scenarios, and objectives. Finally, we provide an outlook on the challenges an...

Mobile Edge Computing Architecture Challenges, Applications, and Future Directions

International Journal of Grid and High Performance Computing

In the current era of technology, the utilization of tablets and smart phones plays a major role in every situation. As the numbers of mobile users increase, the quality of service (QoS) and quality of experience (QoE) are facing the greater challenges. Thus, this can significantly reduce the latency and optimize the power consumed by the tasks executed locally. Most of the previous works are focused only on quality optimization in the dynamic service layouts. However, they ignored the significant impact of accurate access network selection and perfect service placement. This article performs the detailed survey of various MEC approaches with service provision and adoption. The survey also provides the analysis of various approaches for optimizing the QoS parameters and MEC resources. In this regarding, the survey classifies the approaches based on service placement, network selection, QoS, and QoE parameters, and resources such as latency, energy, bandwidth, memory, storage, and pr...

A Comprehensive Comparison between Cloud Computing and Mobile Edge Computing

International Journal of Research and Innovation in Applied Science

Cloud computing provides a user-convenient, low-expense, and powerful computing platform for sharing resources like online storage, applications, and software through the internet. But with the exponential growth of the Internet of Things (IoT) devices and massive amounts of private data in the network, the centralized and conventional architecture of cloud computing has become a bottleneck because of limited bandwidth and resources. At the same time security is also an open concern for cloud computing. Hence, Mobile Edge Computing (MEC) is an extended architecture of cloud computing that enables data processing and storing at the edge of mobile networks. Instead of having some unique features (distributed architecture, parallel processing, low latency), MEC has also brought some security threats and challenges. In this paper, a comprehensive comparison between cloud computing and MEC has been presented in terms of features and security threats. Also, the security mechanisms for han...

Edge Computing: Needs, Concerns and Challenges

— In numerous parts of computing, there has been a continuous issue between the centralization and decentralization aspect which prompted to move from mainframes to PCs and local networks in the past, and union of services and applications in clouds and data centers. The expansion of technological advances such as high capacity mobile end-user devices, powerful dedicated connection boxes deployed in most homes, powerful wireless networks, and IoT (Internet of Things) devices along with developing client worries about protection, trust and independence calls for handling the information at the edge of the network. This requires taking the control of computing applications, information and services away from the core to the other the edge of the Internet. Relevance of cloud computing to mobile networks is on an upward spiral. Edge computing can possibly address the concerns of response time requirement, bandwidth cost saving, elastic scalability, battery life constraint, QoS, etc. MEC additionally offers, high bandwidth environment, ultra-low latency that gives real-time access to radio networks at the edge of the mobile network. Currently, it is being used for enabling on-demand elastic access to, or an interaction with a shared pool of reconfigurable computing resources such as servers, peer devices, storage, applications, and at the edge of the wireless network in close proximity to mobile users. It overcomes obstacles of traditional central clouds by offering wireless network information and local context awareness as well as low latency and bandwidth conservation. In this paper, we introduce edge computing and edge cloud, followed by why do we need edge computing, its classifications, various frameworks, applications and several case studies. Finally, we will present several challenges, concerns and future scope in the field of edge computing. Index Terms— Mobile Edge Computing (MEC), Internet of Things (IoT) ——————————  ——————————

Edge Computing : A Review

2021

The Edge computing concept has gained traction in academic and corporate circles in recent years. It serves as a key part for many future technologies like 5G, Internet of Things (IoT), augmented reality and vehicle-to-vehicle communications by connecting cloud computing services to the end users. Delay-sensitive applications benefit from the Edge computing paradigm's reduced latency, mobility, and location awareness. Significant research has been carried out in the area of Edge computing, which is reviewed in terms of latest developments such as Cloudlet, and Fog computing, resulting in providing with more insight into the existing solutions and future applications. This article is intended to be an overview of huge progress in Edge computing, with a spotlight on the most important applications.

A Comprehensive Review on Edge Computing

International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2023

The Edge computing paradigm has experienced significant growth in both academic and professional circles in recent years. By linking cloud computing resources and services to the end users, it acts as a crucial enabler for several emerging technologies, including 5G, the Internet of Things (IoT), augmented reality, and vehicle-to-vehicle communications. Applications that require low latency, mobility, and location awareness are supported by the edge computing paradigm. Significant research has been done in the field of edge computing, which is examined in terms of recent advances like mobile edge computing, cloudlets, and fog computing. This has allowed academics to gain a deeper understanding of both current solutions and potential future applications. This article aims to provide a thorough overview of current developments in edge computing while emphasising the key applications. In real-world situations where response time is a crucial need for many applications, it also examines the significance of edge computing. The prerequisites and open research issues in edge computing are discussed in the article's conclusion.