Use of COI, CytB and ND5 genes for intra- and inter-specific differentiation of Haematobia irritans and Haematobia exigua (original) (raw)
Related papers
Scientific reports, 2017
Uncovering the hidden diversity and evolutionary history of arthropods of medico-veterinary importance could have significant implications for vector-borne disease control and epidemiological intervention. The buffalo fly Haematobia exigua is an obligate bloodsucking ectoparasite of livestock. As an initial step towards understanding its population structures and biogeographic patterns, we characterized partial cytochrome c oxidase subunit I (COI) and cytochrome b (Cytb) sequences of H. exigua from three distinct geographic regions in Southeast Asia. We detected two distinct mitochondrial haplogroups of H. exigua in our surveyed geographic regions. Haplogroup I is widespread in the Southeast Asian mainland whereas haplogroup II is generally restricted to the type population Java Island. Both haplogroups were detected co-occurring on Borneo Island. Additionally, both haplogroups have undergone contrasting evolutionary histories, with haplogroup I exhibited a high level of mitochondri...
Molecular Ecology Resources, 2008
The horn fly, Haematobia irritans (L.) (Diptera: Muscidae), is a cosmopolitan livestock pest that has caused a great negative impact on the animal production sector throughout the world. Here, we describe 10 polymorphic microsatellite loci isolated from H. irritans. The number of alleles found ranged from two to eight per locus and the expected heterozygosity from 0.1421 to 0.7702. These loci are potentially useful for the fine-scale genetic characterization of horn fly populations and provide fundamental information for pest management and planning of control programs.
Pesquisa Veterinária Brasileira, 2007
Blood-sucking diptera are important parasites in bovine production systems, especially regarding confinement conditions. Haematobia irritans, the horn fly, is one of the most troublesome species within bovine production systems, due to the intense stress imposed to the animals. An important aspect while studying the variability within a species is the study of the geographic structure of its populations and, attempting to find out the genetic flow of Brazilian populations of horn fly, the RAPD technique, which is suited for this purpose, has been used. The use of molecular markers generated from RAPD made it possible to identify the geographic origin of samples from different Brazilian geographic regions, as well as to estimate the genotypic flow among the different Brazilian populations of the horn fly.
Molecular Ecology Notes, 2005
The amplification of complete mitochondrial genomes by long PCR (polymerase chain reaction) has been a major contribution to the large-scale sequencing of arthropodan mitochondrial genomes. In this work, we designed six conserved long-PCR primers to successfully recover the entire mitochondrial genome of the horn fly Haematobia irritans (Diptera: Muscidae) in two overlapping fragments. The conservation and versatility of these primers were tested for 17 other species from four major insect orders: Diptera (14), Coleoptera (1), Lepidoptera (1) and Hymenoptera (1). The amplification of complete mitochondrial genomes in orders other than Diptera suggested an even broader application of these primers, especially within the Hexapoda.
Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758
BMC Genomics, 2011
Background: The horn fly, Haematobia irritans (Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi). Results: A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls.
Journal of Economic Entomology, 2005
Larvae of Gasterophilus spp. (Diptera: Oestridae) cause gastrointestinal myiasis of equids. However, their identiÞcation may be problematic due to morphological similarities between species infesting identical regions of the digestive tract. In this study, genes encoding for mitochondrial cytochrome oxidase I (COI) and for the 16S and 28S ribosomal subunits of the most commonly encountered Gasterophilinae subfamily species [i.e., Gasterophilus haemorrhoidalis (L.), Gasterophilus inermis (Brauer), Gasterophilus intestinalis (De Geer), Gasterophilus nasalis (L.), and Gasterophilus pecorum (F.)] were studied, together with Gyrostigma pavesii (Corti), a rhinoceros parasite, and Hypoderma lineatum (De Villers), as outgroup taxa. Analysis identiÞed interspeciÞc differences that allowed their unequivocal identiÞcation. The high genetic homology among the sequences of G. haemorrhoidalis and G. intestinalis (i.e., 100, 99.86, and 99.46% in the 28S, COI, and 16S genes, respectively) strongly support the hypothesis that they are morphotypes of the same species. Phylogenetic analyses (maximum-likelihood and parsimony) were performed using PAUP; all analyses supported monophyly of subfamily Gasterophilinae. This study conÞrms the utility of the COI and 16S and 28S rRNA genes to address diagnostic and phylogenetic questions in Gasterophilus species.
Tropical …, 2009
The mitochondiral DNA region encompassing the cytochrome oxidase subunit I (COI) and cytochrome oxidase subunit II (COII) genes of two Malaysian blow fly species, Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) were studied. This region, which spans 2303bp and includes the COI, tRNA leucine and partial COII was sequenced from adult fly and larval specimens, and compared. Intraspecific variations were observed at 0.26% for Ch. megacephala and 0.17% for Ch. rufifacies, while sequence divergence between the two species was recorded at a minimum of 141 out of 2303 sites (6.12%). Results obtained in this study are comparable to published data, and thus support the use of DNA sequence to facilitate and complement morphology-based species identification. Ramakrishnan from Department of Parasitology, Faculty of Medicine, University of Malaya for his valuable help in species identification for larval specimens.
An insight into the sialome, mialome and virome of the horn fly, Haematobia irritans
2019
Background The horn fly (Haematobia irritans) is an obligate blood feeder that causes considerable economic losses in livestock industries worldwide. The control of this cattle pest is mainly based on insecticides; unfortunately in many regions, horn flies have developed resistance. Vaccines or biological control have been proposed as alternative control methods, but the available information about the biology or physiology of this parasite is rather scarce. Results We present a comprehensive description of the salivary and midgut transcriptomes of the horn fly (Haematobia irritans), using deep sequencing achieved by the Illumina protocol, as well as exploring the virome of this fly. Comparison of the two transcriptomes allow for identification of uniquely salivary or uniquely midgut transcripts, as identified by statistically differential transcript expression at a level of 16 x or more. In addition, we provide genomic highlights and phylogenetic insights of Haematobia irritans Nor...
Applied and Environmental Microbiology, 2020
The horn fly, Haematobia irritans irritans, is a hematophagous parasite of livestock distributed throughout Europe, Africa, Asia, and the Americas. Welfare losses on livestock due to horn fly infestation are estimated to cost between 1billionand1 billion and 1billionand2.5 billion (U.S. dollars) annually in North America and Brazil. The endosymbiotic bacterium Wolbachia pipientis is a maternally inherited manipulator of reproductive biology in arthropods and naturally infects laboratory colonies of horn flies from Kerrville, TX, and Alberta, Canada, but it has also been identified in wild-caught samples from Canada, the United States, Mexico, and Hungary. Reassembly of PacBio long-read and Illumina genomic DNA libraries from the Kerrville H. i. irritans genome project allowed for a complete and circularized 1.3-Mb Wolbachia genome (wIrr). Annotation of wIrr yielded 1,249 coding genes, 34 tRNAs, 3 rRNAs, and 5 prophage regions. Comparative genomics and whole-genome Bayesian evolutionary analysis of wIrr compared to published Wolbachia genomes suggested that wIrr is most closely related to and diverged from Wolbachia supergroup A strains known to infect Drosophila spp. Whole-genome synteny analyses between wIrr and closely related genomes indicated that wIrr has undergone significant genome rearrangements while maintaining high nucleotide identity. Comparative analysis of the cytoplasmic incompatibility (CI) genes of wIrr suggested two phylogenetically distinct CI loci and acquisition of another cifB homolog from phylogenetically distant supergroup A Wolbachia strains, suggesting horizontal acquisition of these loci. The wIrr genome provides a resource for future examination of the impact Wolbachia may have in both biocontrol and potential insecticide resistance of horn flies.