Polyphyly of the Zaprionus genus group (Diptera: Drosophilidae) (original) (raw)
Related papers
2008
A molecular phylogeny for the drosophilid genus Zaprionus was inferred using a mitochondrial (CO-II) and a nuclear (Amyrel) gene using 22 available species. The combined molecular tree does not support the current classification, dubbed phylogenetic, based entirely upon a morphocline of forefemoral ornamentation. For species for which DNA was not available, phylogenetic positioning was only assigned using morphological characters. In order to avoid conflict between DNA and morphology in the combined analyses (supermatrix method), we developed a new method in which few morphological characters were sampled according to an a priori homoplasy assessment on the consensus molecular tree. At each internal node of the tree, a number of synapomorphies was determined, and species with no molecular sequences were grafted thereon. Analogously to tree vocabulary, we called our method 'morphological grafting'. New species groups and complexes were then defined in the light of our findings. Further, divergence times were estimated under a relaxed molecular clock, and historical biogeography was reconstructed under a maximum likelihood model. Zaprionus appears to be of recent origin in the Oriental region during the Late Miocene ($10 MYA), and colonization of Africa started shortly after ($7 MYA) via the maritime route of the Indian Ocean Islands. Most of the morphological and ecological diversification took place, later, in Western Africa during the Quaternary cyclic climatic changes. Furthermore, some species became recent invaders, with one, Zaprionus indianus, has successfully invaded South and North America during the last decade.
2004
The Drosophila haleakalae species group, the most basal lineage within the Hawaiian Drosophila lineage, consists of 54 described species placed in 5 subgroups. Previous taxonomic studies, initiated by Elmo Hardy, have provided an excellent groundwork on which to base further evolutionary studies. We present a phylogenetic hypothesis of the Drosophila haleakalae species group using a suite of morphological, behavioral, and molecular characters (including 5 newly developed nuclear gene regions) that is more resolved and better supported than any previous phylogeny of this group. We use our phylogeny to refine and revise the taxonomic relationships of species in the haleakalae species group.
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2008
A molecular phylogeny for the drosophilid genus Zaprionus was inferred using a mitochondrial (CO-II) and a nuclear (Amyrel) gene using 22 available species. The combined molecular tree does not support the current classification, dubbed phylogenetic, based entirely upon a morphocline of forefemoral ornamentation. For species for which DNA was not available, phylogenetic positioning was only assigned using morphological characters. In order to avoid conflict between DNA and morphology in the combined analyses (supermatrix method), we developed a new method in which few morphological characters were sampled according to an a priori homoplasy assessment on the consensus molecular tree. At each internal node of the tree, a number of synapomorphies was determined, and species with no molecular sequences were grafted thereon. Analogously to tree vocabulary, we called our method 'morphological grafting'. New species groups and complexes were then defined in the light of our findings. Further, divergence times were estimated under a relaxed molecular clock, and historical biogeography was reconstructed under a maximum likelihood model. Zaprionus appears to be of recent origin in the Oriental region during the Late Miocene ($10 MYA), and colonization of Africa started shortly after ($7 MYA) via the maritime route of the Indian Ocean Islands. Most of the morphological and ecological diversification took place, later, in Western Africa during the Quaternary cyclic climatic changes. Furthermore, some species became recent invaders, with one, Zaprionus indianus, has successfully invaded South and North America during the last decade.
Molecular Phylogenetics and Evolution, 2005
The genus Drosophila has played an essential role in many biological studies during the last 100 years but much controversy and many incompletely addressed issues still remain to be elucidated regarding the phylogeny of this genus. Because information on the Neotropical species contained in the subgenus Drosophila is particularly incomplete, with this taxonomic group being underrepresented in many studies, we designed a study to answer some evolutionary questions related to these species. We subjected at least 41 Drosophilidae taxa to a phylogenetic analysis using a 516-base pair (bp) fragment of the -methyldopa (Amd) nuclear gene and a 672 bp fragment of the mitochondrial cytochrome oxidase subunit II (COII) gene both individually and in combination. We found that the subgenus Drosophila is paraphyletic and subdivided into two main clusters: the Wrst containing species traditionally placed in the virilis-repleta radiation and the second assembling species of the immigrans-Hirtodrosophila radiation. Inside the Wrst of these clusters we could detect the monophyly of both the Xavopilosa (the sister-clade of the annulimana group) and the mesophragmatica (closely related to the repleta group) species groups. Concerning the immigrans-Hirtodrosophila lineage, Zaprionus, Liodrosophila, Samoaia, and Hirtodrosophila were the early oVshoots, followed by the immigrans, quinaria, testacea, and funebris species groups. The tripunctata radiation appears to be a derived clade, composed of a paraphyletic tripunctata group, intimately interposed with members of the cardini, guarani, and guaramunu species groups. Overall, the COII gene yielded a poor phylogenetic performance when compared to the Amd gene, the evolutionary hypothesis of which agreed with the total evidence tree. This phenomenon can be explained by the fast saturation of transitional substitutions in COII, due to strong biases in both base composition and substitution patterns, as also by its great among-site rate variation heterogeneity.
Annales de la Société entomologique de France (N.S.), 2010
Zaprionus vittiger Coquillett is the type species of the genus Zaprionus Coquillett. However, the species is only known from fi ve old museum specimens collected from South Africa and Malawi. It has often been confused with many other Zaprionus species, especially with Z. spinipilus Chassagnard & McEvey, a widespread species in Africa known from Madagascar, Malawi, Ethiopia and Cameroon. We have recently collected fl ies from the type localities of both species (South Africa and Madagascar, respectively). This has prompted us to test the taxonomic boundaries of these two nominal species using molecular (the mitochondrial COII and the nuclear Amyrel genes), chromosomal, morphological (internal and external genitalia), and reproductive isolation analyses. The results suggest Z. spinipilus to be a junior synonym to Z. vittiger. Résumé. La relation entre Zaprionus spinipilus Chassagnard & McEvey et Z. vittiger Coquillett, l'espèce type du genre Zaprionus (Diptera : Drosophilidae). Zaprionus vittiger Coquillet est l'espèce type du genre Zaprionus Coquillet. Cependant, l'espèce n'est connue que par cinq anciens spécimens de musée, récoltés en Afrique du Sud et au Malawi. Elle a souvent été confondue avec plusieurs autres espèces de Zaprionus, en particulier avec Z. spinipilus Chassagnard & McEvey, une espèce répandue en Afrique et connue de Madagascar, du Malawi, de l'Ethiopie et du Cameroun. Nous avons récolté récemment des individus provenant des localités types des deux espèces (Afrique du Sud et Madagascar). Ceci nous a permis d'étudier les différences taxonomiques entre ces deux espèces nominales, en utilisant des caractères moléculaires (le gène mitochondrial COII et le gène nucléaire Amyrel) ; chromosomiques, morphologiques (genitalia externes et internes), ainsi que l'isolement reproducteur. Les résultats suggèrent de mettre Z. spinipilus en synonymie avec Z. vittiger.
Zoological Science, 2007
The immigrans species group in the Drosophilinae is one of the representative species groups of Drosophila in East Asia. Although this group constitutes a significant part of the drosophilid fauna in the Old World, only a few species have been analyzed in previous molecular phylogenetic studies. To study the phylogeny of the immigrans group, we analyzed the nucleotide sequences of two nuclear genes, alcohol dehydrogenase (Adh) and glycerol-3-phosphate dehydrogenase (Gpdh), for 36 drosophilid species, including 12 species of the immigrans group. In the resultant phylogenetic trees, 10 species of the immigrans group (D
A supermatrix-based molecular phylogeny of the family Drosophilidae
Genetics research, 2010
The genus Drosophila is diverse and heterogeneous and contains a large number of easy-to-rear species, so it is an attractive subject for comparative studies. The ability to perform such studies is currently compromised by the lack of a comprehensive phylogeny for Drosophila and related genera. The genus Drosophila as currently defined is known to be paraphyletic with respect to several other genera, but considerable uncertainty remains about other aspects of the phylogeny. Here, we estimate a phylogeny for 176 drosophilid (12 genera) and four non-drosophilid species, using gene sequences for up to 13 different genes per species (average : 4333 bp, five genes per species). This is the most extensive set of molecular data on drosophilids yet analysed. Phylogenetic analyses were conducted with maximum-likelihood (ML) and Bayesian approaches. Our analysis confirms that the genus Drosophila is paraphyletic with 100% support in the Bayesian analysis and 90 % bootstrap support in the ML analysis. The subgenus Sophophora, which includes Drosophila melanogaster, is the sister clade of all the other subgenera as well as of most species of six other genera. This sister clade contains two large, well-supported subclades. The first subclade contains the Hawaiian Drosophila, the genus Scaptomyza, and the virilis-repleta radiation. The second contains the immigrans-tripunctata radiation as well as the genera Hirtodrosophila (except Hirtodrosophila duncani), Mycodrosophila, Zaprionus and Liodrosophila. We argue that these results support a taxonomic revision of the genus Drosophila.
PloS one, 2016
The current subgenus Drosophila (the traditional immigrans-tripunctata radiation) includes major elements of temperate drosophilid faunas in the northern hemisphere. Despite previous molecular phylogenetic analyses, the phylogeny of the subgenus Drosophila has not fully been resolved: the resulting trees have more or less varied in topology. One possible factor for such ambiguous results is taxon-sampling that has been biased towards New World species in previous studies. In this study, taxon sampling was balanced between Old and New World species, and phylogenetic relationships among 45 ingroup species selected from ten core species groups of the subgenus Drosophila were analyzed using nucleotide sequences of three nuclear and two mitochondrial genes. Based on the resulting phylogenetic tree, ancestral distributions and divergence times were estimated for each clade to test Throckmorton's hypothesis that there was a primary, early-Oligocene disjunction of tropical faunas and a ...
Molecular phylogenetics …, 2009
We suggest a new phylogenetic hypothesis for the tripunctata radiation based on sequences of mitochondrial genes. Phylogenetic trees were reconstructed by parsimony, maximum likelihood and Bayesian methods. We performed tests for hypotheses of monophyly for taxonomic groups and other specific hypotheses. Results reject the monophyly for the tripunctata group whereas monophyly is not rejected for the tripunctata radiation and other specific groups within the radiation. Although most of the basal nodes were unresolved we were able to identify four clusters within the tripunctata radiation. These results suggest the collection of additional data before a proper taxonomic revision could be proposed.
Genetica, 2010
The Drosophila willistoni subgroup represents a complex with varying taxonomic levels. It encompasses D. willistoni and its five sibling species: D. equinoxialis, D. insularis, D. paulistorum, D. pavlovskiana and D. tropicalis. Of these, D. equinoxialis, D. tropicalis and D. willistoni present differentiation at subspecific level, whereas D. paulistorum represents a superspecies, formed by six semispecies. Despite this taxonomic and evolutionary complexity, many of these semi and subspecific taxa have not yet had their phylogenetic status tested in an explicitly molecular study. Aiming to contribute to the understanding of the evolution of this challenging group, we analyzed nucleotide sequences from two mitochondrial and four nuclear datasets, both individually and simultaneously, through different phylogenetic methods. High levels of incongruence were detected among partitions, especially concerning the mitochondrial sequences. As this incongruence was found to be statistically significant and robust to the use of different models and approaches, and basically restricted to mitochondrial loci, we suggest that it may stem mainly from hybridization-mediated asymmetrical introgression. Despite this, our nuclear data finally led to a phylogenetic hypothesis which further refines several aspects related to the willistoni subgroup phylogeny. In this respect, D. insularis, D. tropicalis, D. willistoni and D. equinoxialis successively branched off from the willistoni subgroup main stem, which recently subdivided to produce D. paulistorum and D. pavlovskiana. As regards the semispecies evolution, we found evidence of a recent diversification, which highly influenced the obtained results due to the associated small levels of genetic differentiation, further worsened by the possibly associated incompletely sorted ancestral polymorphisms and by the possibility of introgression. This study also raises the question of whether these semispecies are monophyletic at all. This reasoning is particularly interesting when one considers that similar levels of reproductive isolation could be attained through infection with different Wolbachia strains.